Improving Source Selection in Analogical Reasoning
An Interactionist Approach

William A. Stubblefield
Department of Computer Science
Dartmouth College

Abstract

The success of any analogical reasoner de-
pendsuponits ability to select a relevant
source. We can improve source selection by
more completely integrating the process of
source retrieval with analogical inference,
and by using experience in solving target
problems to find properties that effectively
predict a source's relevance to future tar-
gets. This paper describes the design and
evaluation of SCAVENGER, an analogical
reasoning program that we have built to
test these ideas.

1. Interactionism and source retrieval

Analogical inference is the process of reasoning
about similarity: If two things are known to have
certain similarities, we may infer by analogy that
they are likely to have additional properties in
common. Formally, an analogy is a mapping from
elements of a source, a well understood problem so-
lution, theory, plan, etc., to the target, a new prob-
lem to be solved. Analogical inference constructs
this mapping, transferring knowledge from the
source to the target in the process.

The success of any analogy depends upon the se-
lection of a relevant source. Most analogical rea-
soners share a common structure (Hall 1989; Kedar-
Cabelli 1988) that makes a number of assumptions
about source selection. These assumptions include:

1. The separation of retrieval and inference.
Many analogical reasoning programs treat
source retrieval and inference as separate
operations. They choose a source on the ba-
sis of known similarities to the target, prior
to making any inferences.

2. Source oriented approaches to memory or-
ganization. To improve efficiency, analogi-
cal reasoners organize sources under a hier-
archical index. Generally, they construct
indices by comparing source descriptions to
find properties that best distinguish them,
and use these properties as indices for

George F. Luger
Department of Computer Science
University of New Mexico

source retrieval (Kolodner 1993; Fisher and
others 1991).

Our criticism of these assumptions derives from
theory of metaphor (Black 1962).
This theory views metaphors as complex interac-
tions between systems of relations in the source and
These interactions, while primarily
transferring information to the target, can also al-
In particular,
metaphors can create notions of similarity where
interaction
theory to analogical reasoning leads to the follow-

the interaction

the target.
ter the semantics of the source.
none previously existed. Applying the
ing criticisms of current source selection methods:

1. Source retrieval and inference should be
combined. If metaphors and analogies can
create similarities, how can we use similar-
ity to select analogical sources? This circu-
larity suggests that retrieval is itself a
form of inference concerning the relevance of
a source to a target. An analogical reason-
ing system should integrate retrieval and
inference, choosing a source by evaluating
the possible inferences afforded by alterna-
tive sources.

2. Index hierarchies should be constructed
through experience in solving target prob-
lems. Most systems construct index hierar-
chies by comparing sources to find those
properties that best distinguish them.
Unfortunately, such algorithms can only
consider a small number of properties in con-
structing hierarchies. The common ap-
proach to this problem is for the system de-
signer to specify a fixed retrieval vocabu-
lary. This ignores the reasoner's experience
in solving target problems. An alternative
approach uses information gained in solv-
ing targets to find properties that will se-
lect relevant sources.

2. An interactionist model of source retrieval

We have formalized these ideas in a computer pro-
gram, called SCAVENGER, that explains empiri-

cal observations through analogies with knowledge
of similar situations. We state this problem as fol-
lows:

Given:

1. A series of observations to be explained.
These have a temporal order, but their
causal structure is not apparent.

2. Knowledge about objects and processes in a
variety of domains. These are candidate
sources for explaining the observations.

Goals:

1. Select an appropriate source, and construct
an analogy between it and the target obser-
vations.

2. Based on this analogy, construct a causal
explanation of the observations.

3. Confirm the explanation empirically.
Assume that these experiments are costly,
and should be kept to a minimum.

We have represented observations to be ex-
plained as transcripts of evaluations of LISP func-
tions. Sources are selected from a collection of
known objects and methods written in the Common
LISP Object System. We choose this representation
in order to test our ideas using a complex language
that was not of our own design. Also, this represen-
tation enables the reasoner to test its inferences by
constructing and evaluating LISP function calls.

For example, consider the problem of explain-
ing the meaning of target-class, target-function-1
and target-function-2 in the following transcript.
The transcript represents the behavior of these
functions as if they were evaluated by the LISP in-

terpreterl:

> (setq x (make-instance 'target-class))
2

> (target-function-1 'a x)

?

> (target-function-1'b x)
?

> (target-function-2 x)

a

1 The "?" indicates an unspecified (or unknown)
value; this adds an element of noise to the
observations to be explained.

> (target-function-2 x)

Source objects and methods are stored along
with high-level descriptions of their semantics.
For example, the stack manipulation method, pop,
is stored in the source base with:

1. Its argument and result types:
pop: stack ->t

2. Its LISP definition:
(defmethod pop ((s stack)) .. .)

3. A description of its result and side effects.
In this case, the result is an element of a
collection and the side-effect is to remove
an item from the collection passed in as its
first argument:

result: (accessed-element result)

side-effects:
((remove-from-collection arg-0))

To illustrate SCAVENGER's behavior, consider
the example of interpreting the above transcript.
Assume that sources are indexed under the index
hierarchy shown in figure 1. Here, the root node
has one specialization (node #2), that describes and
indexes three source functions: pop, dequeue and
first. These functions operate on instances of the
classes stack, queue and ordered-list respectively.
Note that the language used to describe functions is
general enough to represent classes of similar
functions.

0

:
arguments: (arg-0)
equeue

result: (accessed-element result)
side-effects:

((remove-from-collection arg-0)) @
Figure 1

The algorithm proceeds as follows:

1. Preprocess the target transcript. This step ex-
tracts available information on the types of target
function arguments. It will use this information to
constrain analogical matches. SCAVENGER also
assigns a default, "vanilla" semantics to each tar-
get. For example, both target functions would be as-

sumed to have no side effects, and return a new ob-
ject as their result:

result: (new-object result)
side-effects: ()

2. Search the hierarchy for all indices whose func-
tion descriptions match a subset of the target func-
tions. In our example, target-function-2 matches the
description in index 2. The root index, which has no
function description, will match any target. On
matching an index, transfer its function descriptions
to the matching target functions. This is an analog-
ical inference; it is also non-monotonic in that it
may later be retracted. SCAVENGER handles non-
monotonicity by maintaining multiple interpreta-
tions of the behavior of target functions. In this ex-
ample, a search of the index hierarchy produces
two interpretations: the match with the root will
leave all functions with their default semantics
(call this interpretation-1). The match with node
#2 interprets target-function-2 as returning an item
from a collection, and changing the collection as a
side-effect (interpretation-2).

3. Rank these different interpretations.
SCAVENGER uses a number of heuristics to do so.
The most important favors interpretations resulting
from matches with nodes deep in the index hierar-

chy. Another heuristic constructs a graph2 of the
target transcript using both default function de-
scriptions and those inferred from the index match.
It analyzes this graph for properties such as con-
nectedness, simplicity, etc. By transferring infor-
mation fromthe source to the target and using it to
evaluate candidate sources, a proposed analogy can
actually create new notions of similarity.

4. Select the best ranked of the unevaluated inter-
pretations, and create a set of partial analogical
mappings between target functions and sources
stored under the index. Doing this to interpretation-
2 results in three partial analogies (figure 2). Note
that the match with the root would yield one par-

tial analogy in which no targets are mapped.3

5. Complete each partial analogy. Each analogy
can have multiple completions, although type con-

2 A variation of a data-flow graph.

3 If all other indices fail to produce a plausible
analogy, SCAVENGER will eventually fail back to
the root. This will lead to an exhaustive search of
the source base under step 5, guaranteeing that the
algorithm will find a plausible analogy, should
one exist.

straints acquired by the initial match limits possi-
bilities. For example, the mapping of target-func-
tion-2 onto pop will also cause target-class to be
mapped onto the source class: stack. Consequently
target-function-1 can only map onto the function,
push.

Partial analogies

target-function-1 —> ?
target-function-2 —> pop
target-function-1 —> ?
target-function-2 —> dequeue
target-function-1 —> ?
target-function-2 —> first

Figure 2

6. Evaluate the analogies produced in step 5 by us-
ing the sources to execute the target transcript. In
this example, the only analogy that will execute
the target correctly maps target-class onto stack,
target-function-1 onto push and target-function-2
ontopop. If none of the analogies produced by the
current interpretation behave correctly, go to step 4;

otherwise, return this solution4 and continue to step
7. The graph of the transcript constructed using the
function descriptions acquired through the analogy
is the desired explanation of the target.

7. Update the index hierarchy by trying to special-
ize the index node that produced the successful
analogy. SCAVENGER does this by searching for a
sourcefunction in the successful analogy that was
not indexed under the node being specialized, and
whose description differs from those of the failed
sources. SCAVENGER uses a variation of the in-
formation-theoretic evaluator used in the ID3 in-
duction algorithm (Quinlan 1986) to rank alterna-
tive specializations. For example, if we assume
that push and enqueue have identical descrip-
tions, but the function for inserting objects into an
ordered-list has a different description,
SCAVENGER would produce the specialization of
figure 3. In using success in solving target problems
to determine the relevance of different source
methods, SCAVENGER implements a form of ana-
logical transfer from the target back to the source.

4 In general, there may be multiple plausible
analogies for a given target. SCAVENGER selects
the best of these solutions heuristically.

1.
0
2 ©
arguments: (arg-0)
result: (accessed-element result)
side-effects:
((remove-from-collection arg-0)) @

3.
arguments: (arg-0) pop
result: (accessed-element result) .
side-effects: pus

((remove-from-collection arg-0))

arguments: (arg-0 arg-1) dequeue
result (add-to-collection arg-1)
side-effects: ()

enqueue

Figure 3

3. Evaluation

A central question in evaluating SCAVENGER is
whether there is enough similarity between target
problems to create generally useful indices. In
repeated trials on 17 training instances, using a
source base of 12 classes and 68 methods, the
learning algorithm demonstrated a 65% speedup
(figure 4). The learning algorithm also generalizes
well across different target instances. Testing it on
a different set of problems from those used to train
it showed a 52% speed up. Note that this ability
to generalize, is sensitive to the language used for
describing sources.

In addition, the learner discovers interesting
combinations of source functions. In the example of
this paper, it found that combinations of insertion
and accessor functions for collections were interest-

ing.

We have tested the algorithm on a variety of
domains, including the LISP transcript interpreta-
tion problem described above, the problem of find-
ing bugs in failed plans, and the explanation of ob-
servations in naive physics, and these results hold
across domains.

4, Conclusion

Our work has investigated the ramifications of the
interaction theory of metaphor for analogical
source retrieval. In particular, it has shown the

viability of transferring knowledge of the rele-
vance of source properties from the target back to
the source, using this to update the organization of
source memory. This idea that criteria for deter-
mining the relevance of analogical sources arises
out of their interaction with target problems is one
of the most interesting and potentially useful im-
plications of the interaction theory of metaphor.

200 n
.
2
g 150 1
&
c
L 100 + u
S \
5 .\I
B 50 +
o
|_
o } } } }
1 2 3 4 5
Run #
Figure 4
References

Black, Max. 1962. Models and Metaphors. Ithaca,
NY: Cornell University Press.

Fisher, Douglas H., Michael Pazzani J.,, and Pat
Langley, ed. 1991. Concept Formation:Knowledge
and Experience in Unsupervised Learning. San
Mateo, Cal.: Morgan Kaufmann.

Hall, R.P. 1989. Computational Approaches to
Analogical Reasoning: A Comparative Analysis.
Artificial Intelligence 39 (1): 39-120.

Helman, David H., ed. 1988. Analogical Reasoning:
Perspectives from Artificial Intelligence, Cognitive
Science and Philosophy. Dordrecht: Kluwer
Academic.

Kedar-Cabelli, S. 1988. Analogy - From a Unified
Perspective. In David H. Helman (1988).

Kolodner, Janet. 1993. Case-Based
Mateo, Cal.: Morgan Kaufmann.

Reasoning. San

Quinlan, J. R. 1986. Induction of Decision Trees.
Machine Learning 1 (1): 81-106.

