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Abstract and analogy from experience. This program illustrates
possible mechanisms through which such general, pre-
conceptual aspects of our embodiment as emotions may
guide the acquisition of strong, semantically rich patterns
of metaphor. SCAVENGER also provides a model of the
way in which metaphor projects meaning onto "raw"
emotions, enabling the varied and subtle interpretations we
give our emotional states. In exploring these questions,
this paper considers such issues as:

The recurrence of certain basic metaphors across diverse
times and cultures is an interesting issue in the debate
over the form and extent of innate human knowledge. Are
the common themes of metaphor and narrative evidence
for strong innate human knowledge, or the result of
weaker constraints on learning and development?
Machine learning has demonstrated that strong
conceptual knowledge may be acquired from experience
and weak initial learning biases. Drawing on these results
and a computational model of metaphor and analogy
formation, this paper examines the ability of emotions to
serve as effective biases on the acquisition of useful,
domain specific patterns of metaphor. In addition, it
considers the mechanisms through which metaphor
projects semantic structure onto emotional experience.

• The interaction between metaphor and emotion. How
does metaphor gain its unique ability to incite
emotions? How do emotions influence the development
of powerful, culturally universal metaphors?

• The feasibility of emotions and other aspects of our
physical embodiment as weak biases on the acquisition
of specific patterns of narrative and metaphor.

Introduction • The formal properties required of effective biases for
metaphor selection and interpretation.It may be that the universal history is the history of the

different intonations given a handful of metaphors.
Formal Models of MetaphorJorge Luis Borges

Although artificial intelligence has largely ignored
metaphor's relationship to emotion, it has articulated the
formal structure of metaphoric inference. Metaphors are
inferences of the form, A is B, where properties of B (the
metaphor's source) are inferred to apply to A (the
metaphor's target). For example, in the metaphor, "love is
a rose," "love" is the target, "rose" is the source, and
properties of roses that may be applied to love include
beauty, complexity and fragility. Narratives, particularly
those of myth and literature, may be regarded as complex,
temporally structured metaphors.

Why are there so many similarities among the myths, sto-
ries and metaphors different cultures use to express their
understanding of life, society and nature? Why have litera-
ture, painting, religion and even such practical arts as law,
built on the same metaphors and narrative motifs through-
out history and across diverse cultures? For example, the
hero myth not only exists in nearly all cultures, but shows
the same basic structure in all its occurrences (Campbell
1949); there is even evidence for its influence on our under-
standing of science (Landau 1991). Similar universal
themes include the youth's coming of age, the proud man's
fall, and the friend's betrayal. This recurrence of a small
number of themes has long been recognized in the arts,
anthropology, and psychology, and is an interesting
problem for theories of the form and extent of innate
human knowledge.

Metaphoric inferences develop across four major stages:
 • Inference begins with selection of an appropriate
source. The source should enable inferences that are
relevant (providing useful information about the target),
novel (metaphor's strength is in discovering new
knowledge) and valid.

Lakoff and Johnson (1980) have argued not only for the
importance of metaphor in human thought, but also for the
idea that metaphors have their foundations in our biological
embodiment and experience of the physical world. This
paper explores this idea in the context of a formal model of
metaphoric and analogical reasoning. SCAVENGER
(Stubblefield 1995; Stubblefield and Luger 1996) is a
computer program that learns useful patterns of metaphor

• The selection of a source generally establishes an initial
mapping of source properties onto the target.
Metaphoric inference extends this mapping to new
properties and relations. Essentially, a metaphor pro-
jects aspects of the source's semantic structure onto the
target.

• Metaphoric inferences must be re-interpreted and vali-



dated in the target context. Validation of metaphors may
involve techniques ranging from empirical tests (as with
scientific metaphors), to subjective, emotional
responses to artistic metaphors. Interpretation and
validation are closely coupled, with validation failures
often leading to re-interpretation (or repair) of the
metaphor.

In contrast, weak heuristics exploit only general, formal
properties of the target or source. Systematicity, the ability
of a single metaphor to project an entire system of
properties and relations onto the target (Black 1962;
Gentner 1983; Lakoff and Johnson 1980), is the basis of
many such heuristics. For example, the structure-mapping
theory of analogy favors source-target mappings that
transfer more complex systems of relationships to the
target (Gentner 1983). Along with such heuristics as
parsimony (a preference for simple target-source mappings)
and a preference for metaphors that have proven effective in
the past, structure-mapping is an often studied example of a
weak bias for metaphor formation.

• Finally, participants in the metaphor should learn. The
metaphor should not only change our understanding of
the target, but also should improve our ability to apply
the same metaphoric source in the future.

This framework is, of course, an abstraction from much
more complex and still poorly understood processes.
Although alternative models (most notably Black's (1962)
interaction theory) exist, this simple framework
characterizes the major decisions that must be made in
developing any metaphor or narrative. For example, in
writing a story, an author must:

Systematicity also accounts for much of metaphor's
importance, its unique ability to define a focused yet
flexible context for acquiring and applying knowledge.
Once a source metaphor has been selected, learning and
problem solving can focus on the source's known
properties and relations, greatly reducing the spaces that
must be searched in learning and problem solving.
Narrative also exhibits systematicity in combining separate
events into a coherent, temporally ordered system of facts
and relationships.

• Determine its basic form: is the story a comedy? a
tragedy? a tale of a hero's struggles? This is the choice
of a metaphoric source. For example, an author may
decide that her intention can best be communicated
using a "moral agent as embattled hero" metaphor. Although metaphoric reasoning in humans exploits both

weak and strong heuristics, it is important to ask whether
strong heuristics may be learned from experience starting
only with general, weak biases. The relationship of this
question to the innateness debate is clear: if it is not
possible to learn strong patterns of metaphor from weak
initial biases, then the universal themes of human narrative
must depend directly upon strong innate knowledge. I.e.,
the power and universality of the hero myth and other
central metaphors would result directly from epigenetic
constraints on brain architecture. On the other hand, if
weak biases are a sufficient starting point, then we have
support for this paper's central conjecture: that basic stories
and metaphors develop through the interaction of human
experience and weak learning biases, such as may be
provided by basic emotional reactions and other aspects of
our physical embodiment.

• Compose the story through a process of interpreting the
basic metaphor and projecting this interpretation onto
the story's target theme: Is the hero's struggle a war? a
criminal investigation? a journey? How does the author
flesh out the basic narrative framework? What are the
major traits of the heroes and villains? What are the
consequences of their moral choices?

• Interpret and validate the metaphor across different
revisions and through the editing process. When the
story is published, processes of criticism and discussion
contribute to the metaphor's ongoing re-interpretation.

• Learn from the metaphor, from its development across
different articulations, interpretations and contexts. This
involves both the author and her audience.

Metaphoric inference is complex and could not be
performed without some sort of heuristic bias. Following
standard artificial intelligence terminology, we may
characterize heuristics as either "strong" or "weak":

Metaphor, Emotion and Innateness
Again and again I encounter the mistaken notion that an
archetype is determined in regard to its content, in other
words that it is a kind of unconscious idea (if such an
expression be permissible). It is necessary to point out
once more that archetypes are not determined as regards
their content, but only as regards their form, and then only
to a very limited degree. A primordial image is determined
as to its content only when it has become conscious and is
therefore filled out with the material of conscious experi-
ence.

Strong heuristics involve knowledge of a particular
problem domain. An example of a strong heuristic for
metaphor formation might be the knowledge that "waves
are often a useful metaphor for explaining cyclical natural
phenomena." Similarly, the general form of the hero story
is a strong heuristic for constructing narratives: cultures
often express their key values through stories of a hero's
personal struggles to preserve "good" and overcome "evil."

The cognitive science literature supports the role of
strong heuristics in metaphor and analogy. For example,
Holyoak (1985) has demonstrated that human subjects are
better able to interpret a suggested analogy once they have
been shown a structurally similar analogy. In this case, the
example provides strong clues to the structure of the
suggested analogy.

Carl G. Jung (Jung 1963)

One of the justifications for the importance of metaphor is
the inexpressibility hypothesis (Ortony 1975), which holds
that metaphors can express ideas that would be difficult or
impossible to communicate using more literal language.
This can be given a stronger statement: a primary function



of metaphor is to impose a conceptual structure on vague,
undifferentiated emotions and experiences.

for defining exactly how genetics and experience interact to
shape our minds (Elman et al. 1996; Barkow et al. 1992).

Cognitive neuroscience supports the idea that our minds
impose a structure on emotional experience. Based on
experiments with individuals who have had their corpus
callosum (the connection between the two sides of the
brain) surgically severed, Gazzaniga (1998) argues that the
construction of explanations about our experience and
behavior is distinct from our ability to recognize patterns
of experience, respond to requests, and even carry out
complex sequences of actions. Bechera et al. (1997) have
shown that in games, people's emotional responses to
situations can indicate their decision strategies before they
are able to articulate those strategies. LeDoux (1996)
distinguishes between emotional memory, a conditioned
emotional response to a situation, and memory of an
emotion , a structured, conceptual account of the emotional
experience's meaning and circumstance.

In applying developmental psychology and connectionist
theories to questions of innateness and learning, Elman et
al. (1996) offer such a perspective on the way in which
genetics and environment interact to shape the human
mind. In their introduction, the authors describe three
possible forms of innate mental abilities:

• Representational constraints are the strongest possible
form of innate knowledge. Representational views hold
that specific ideas are genetically determined in the
"micro circuitry" of the human brain. Based on
neuroscientific evidence about brain development, and
the importance of neural plasticity to learning and
problem solving, Elman et al. conclude that true
representational constraints are rare.

• Architectural constraints result from the modular
structure of the brain, and are of larger granularity than
the micro circuitry required for representational
constraints. Architectural constraints include the
organization of individual brain modules, and the way
those modules are interconnected. Architectural
constraints function indirectly, by determining the types
of information than can be received in the brain and
hence, that can be acquired and stored.

Damasio (1994) offers additional perspectives on the
complementary relationship between emotions and reason.
Emotions contribute to reason by supporting a focus of at-
tention, and providing basic selection criteria on alternative
choices. Although lacking in propositional content, emo-
tions are essential to our efforts to formulate and act on
that content. This ability of emotions to influence our un-
derstanding of propositional knowledge supports the view
of emotions as a source of weak biases on the learning of
symbolic forms of knowledge such as metaphor.

• Timing constraints refer to genetically determined
differences in the development of various brain
structures. Differing rates of maturation among brain
structures, changes in the plasticity of brain modules
during development and other developmental variations
exert biases on the way the brain interacts with the
environment and the types of information that shape its
development.

LeDoux (1996) discusses a variety of research findings
indicating that emotions are of a few basic types. Drawing
on such data as physiological manifestations of emotional
states, categorization of human emotional expressions, and
analysis of linguistic categories of emotions, researchers
have hypothesized a small number of basic emotional
states. Although specific taxonomies differ, they all agree
that the number of basic emotions is small (< 10) and sub-
ject to conceptual specialization. This suggests that the
shades of emotion we articulate result from the projection
of propositional structure onto these basic emotions.

Architectural and timing constraints shape our knowledge
by functioning as learning biases, heuristics that guide the
acquisition of basic knowledge from the similar experiences
all humans share.

For example, in proposing an alternative to Chomsky's
view that basic grammatical structures are strongly innate,
Deacon (1997) presents evidence that weak learning and
attention biases are sufficient to support the acquisition of
complex grammars. He also argues that these weak innate
learning biases interact with the common patterns of
human experience to give all human languages their
common underlying structure.

Metaphor is an important means by which our minds
project propositional content onto emotional states.
Metaphors have a rich, systematic conceptual structure;
emotions are general states lacking specific semantic con-
tent. Metaphor and narrative place emotions in a symbolic
framework that allows them to be recalled through the ex-
perience of art. Emotions, in turn, provide a basic source of
values that supports reason in making choices and evaluat-
ing the results. This interaction is the basis of emotion's
role as weak biases on metaphor formation.

Metaphoric inference is one vehicle through which these
biases may shape learning. Lakoff and Johnson (1980)
argue that the complex patterns of meaning found in
human language derive from the basic facts of our physical
embodiment through processes of metaphoric extension.
Starting with the basic constraints provided by our bodies
(standing is better than falling, self is different from other,
etc.) as an initial set of metaphoric sources, we derive the
idioms of human language by developing successive
metaphors to explain experience. Emotions are another
source of embodied constraints on metaphor formation.

Traditionally, the debate over innateness has been defined
by two extreme viewpoints: the view of the human mind
as a blank slate, free of any biases, and the idea that we
inherit hard-wired instincts for such specific behaviors as
greed, aggression and territoriality. The middle view, that
our behavior was a product of both nature and nurture,
tended to be dismissed as simultaneously obvious and
uninteresting. Recently, advances in cognitive science,
machine learning and neuroscience have given us a basis These findings lead to several hypotheses about the role



of weak biases in metaphor formation: that the index functions as a source of strong constraints on
metaphor formation. As will be shown, SCAVENGER
constructs its index through inductive learning.

• Weak biases, such as could be supplied by emotional
reactions to experience, can support the acquisition of
strong, domain specific patterns of metaphor.

• Metaphor constrains the interpretation of experiential
data, imposing semantic content on "raw" sensation and
emotion.

• The acquisition of strong patterns of metaphor must
occur incrementally. Consequently, the learner be able
to represent and exploit partial patterns of metaphor and
use them to improve its abilities.

The SCAVENGER Experiments
SCAVENGER is a computer program that solves prob-
lems through metaphoric and analogical reasoning. It looks
for similarities between new problems and stored compo-
nents of previously successful solutions. After selecting a
source, it transfers source properties to the target problem
and elaborates the result to arrive at a complete solution.
Finally, it tests its inferences and uses the results to im-
prove its future performance. This section offers a high
level description of SCAVENGER; for details, see
(Stubblefield 1995; Stubblefield and Luger 1996).

Figure 1

SCAVENGER generates a set of partial solutions by
finding all paths through the index that match the target
problem. When it encounters a node that does not match
the target, it prunes that node and its descendants. It does
retain the path leading to the failed node's parent, along
with all candidate solutions produced by that path.

Although this follows a common form of search-based
problem solving, source selection in SCAVENGER has a
number of properties that more closely match the patterns
of metaphoric inference. The most important is the algo-
rithm used to determine if an hypothesis matches a given
index node. Assumption-based matching does not require
that all the index node's properties be true for the target
problem, only that these properties are not known to be
false for the target. In other words SCAVENGER allows
the match unless it is known to be false. Consequently,
source retrieval in SCAVENGER is not a process of
matching known properties, but one of projecting the
source operator's properties onto the target problem. We
may think of each candidate solution that SCAVENGER
forms as a different metaphor, projecting different proper-
ties onto an under constrained target problem.

The SCAVENGER algorithm follows the four-stage
structure common to metaphoric and analogical inference:

• Source selection: choosing a set of candidate sources.

• Elaboration: extending each candidate source to fully
match the target problem.

• Interpretation and evaluation: testing each source-target
mapping for validity.

• Learning to improve its future performance.

Source Selection
SCAVENGER maintains a knowledge base of problem-
solving operators. Solutions require the proper sequence of
operators. Each operator is described by a set of properties;
these are essentially preconditions for its application.
Some, but not all of these properties can be observed in
target problems.

Because SCAVENGER's search of the index tree
produces a large number of partial candidate solutions, it
relies on heuristics to rank them for further elaboration.
SCAVENGER's heuristics include:SCAVENGER organizes its knowledge-base using an

hierarchical index as in figure 1. Each node of the index
contains properties that are common to a set of problem
solving operators. In the figure, operators have labels of
the form On, and properties of the form pn.

• A preference for longer partial solutions (those found
deeper in the index tree). This reflects a preference for
specificity, since longer operator sequences may be
interpreted as making a stronger assertion about the
target problem. This also can be viewed as a variation
of structure-mapping's systematicity heuristic (Gentner
1983), since longer operator sequences impose more
structure on the target problem.

Beginning with observed properties of a target problem,
SCAVENGER walks the tree and composes a set of candi-
date partial solutions. Each path through the tree represents
a set of operator sequences, generated by the cross product
of the operators stored at each node. In figure 1, a path
through nodes #1 & #2 generates 6 such sequences:

• A preference for simpler solutions. Simplicity measures
vary with the problem domain, but a typical metric
preferred chains with the fewest different operators. For
example, SCAVENGER might prefer the sequence O1-
O2-O1 over O1-O2-O3.

{O1 - O1; O1 - O4; O2 - O1; O2 - O4; O3 - O1; O3 - O4}

Each of these partial candidate solutions combines an
operator from node #1 with an operator from node #2. Note After searching the index tree, SCAVENGER produces a



set of partial candidate solutions. Again, because assump-
tion-based matching allowed the target to match index
properties that were not known to be either true or false in
the target, SCAVENGER's matching algorithm followed
metaphor's behavior of projecting information onto poorly
structured targets.  It is reasonable to think of these as par-
tially interpreted metaphors.

previously examined by (Brown and VanLehn 1980;
VanLehn 1990). I chose these problems because all of
them are severely under constrained by the given data.
These problems are too difficult to be solved efficiently
using only general, weak heuristics; they require strong
heuristics for efficient solution. SCAVENGER's task was
to learn these strong heuristics.

Elaboration and Evaluation
Figure 2 illustrates SCAVENGER's performance in

diagnosing bugs in children's subtraction. The graph shows
its improvement across 5 trials of the training data. Due to
the many possible combinations of bugs it had to test, the
untrained algorithm took approximately 1600 seconds per
problem. The trained version took an average of 11 seconds
per problem. The untrained version of the algorithm gener-
ated an average of 3096 candidate analogies per problem.
After training, it generated an average of 78 candidates per
problem.

Source selection produced a number of partial candidate
solutions, ranked according to heuristic merit.
SCAVENGER then completed each candidate solution
using standard AI search techniques. Note that a single
partial solution could lead to many complete solutions.
SCAVENGER evaluates each completed solution by
determining whether or not it solved the target problem.
Once SCAVENGER found an acceptable solution, it
stopped the elaboration and evaluation phase.
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Learning
After the elaboration and evaluation of candidate inferences,
SCAVENGER was left with one correct solution, a set of
incorrect solutions, and a set of untested partial solutions.
It used these as training data for improving its ability to
select candidate sources. SCAVENGER categorized the
correct solution as a positive training example, and the
failed solutions as negative examples. It then examined the
operators that the elaboration stage added to source
selection's partial solution, selecting the properties that
best distinguished correct solution from the negative
examples. When it selected these properties, it used them
to create a child node of the index node that produced the
correct solution, storing all matching operators under it. Figure 2

SCAVENGER chose the properties that best distin-
guished the correct and incorrect solutions performing an
information theoretic analysis to select properties that carry
the most information in distinguishing positive and nega-
tive training examples (Quinlan 1986).

In applying SCAVENGER to the test set (problems that
the learning algorithm had not seen), the untrained version
took about 1500 seconds per problem.  This improved to
76 seconds after training.  Although this is a strong result,
it is worth noting that it was skewed by the presence of a
small number of novel problems that took a very long
time to solve.  Excluding these, the average time on the
test problems drops to under 11 seconds. These results are
typical of those achieved in the other problem domains.

Note that SCAVENGER uses only weak biases in
learning to improve its source selection:

• It relied on its ability to classify solutions as correct or
incorrect. This is no more information than could be
gained from emotional reactions to a story or metaphor.

• It used an information theoretic evaluation to select
those properties of the positive solution that best
distinguished it from the set of negative solutions. This
sort of distinction is well within the capabilities of even
simple connectionist architectures.

Conclusion
Although there are considerable differences between the
problems SCAVENGER solved, and the creation of power-
ful literary metaphors and narrative themes, the
SCAVENGER experiments clearly support the ability of
weak biases to drive learning of more powerful, domain
specific patterns of metaphor. As SCAVENGER extended
its index tree, it acquired a number of strong but broadly
applicable patterns of metaphor. In doing so, it relied only
on the classification of candidate solutions as positive or
negative, and the ability to select properties that best
distinguished positive and negative solutions. The first of

Testing SCAVENGER
SCAVENGER was tested on several application domains
(Stubblefield 1995), including determining the applicability
of LISP functions to new problems from examples of their
desired behavior, constructing explanations of observed
behaviors in simple physical systems, and inferring the
cause of children's mistakes in subtraction, a problem



these could be provided by emotional reactions to
experience, and the second is well within the capabilities of
connectionist systems.

I hope this paper has helped fill in some of the details
behind this man's remarkable insight.

The role of culture in recording and transmitting
metaphors further supports the efficacy of weak biases.
Culture greatly augments our own learning abilities by
preserving stories and metaphors that have proven effective
in the past.
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