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Abstract

Analogy is a process of discovering and reasoning about similarities: if two objects or

situations are known to have certain properties in common, analogy lets us infer

additional similarities between them.  Analogical inference transfers knowledge

from a well understood source domain to a poorly understood target.  An essential

first step in analogical reasoning is the selection of an appropriate source for the

analogy.  Most analogical reasoners rely upon a number of simplifying assumptions

in selecting sources: these include restrictions on the choice and representation of

information that may be considered in selecting sources, the use of monotonic

measures of similarity, and a reliance on clustering techniques to construct index

hierarchies through an analysis of potential sources.

Building on a theory of metaphor known as the interaction theory, this dissertation

argues that these assumptions unnecessarily restrict source selection.  These

criticisms lead to the three conjectures investigated in this work: (1) source retrieval

may compensate for missing information about target problems by making

reasonable assumptions, and using these inferences to distinguish candidate

sources; (2) the similarity of candidate targets and sources should be measured

according to the source's anticipated effects on the systematic structure of the target

problem; (3) inductive learning can improve source selection based on the

reasoner's experience in solving target problems.
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1

Introduction and Overview

                                                                                                                                                                      

And so handled, the quest of physical causes merges with another great Aristotelian
theme - the search for relations between things apparently disconnected and for
'similitude in things to common view unlike.'  Newton did not show the cause of the
apple falling, but he showed a similitude . . . between the apple and the stars.  By doing
so, he turned old facts into new knowledge . . .

D'Arcy Wentworth Thompson
On Growth and Form

Metaphor and analogy are processes of discovering and reasoning about similarities:

if two objects or situations are known to have certain properties in common, these

processes let us infer additional similarities between them.  Through metaphor and

analogy, we use knowledge of one situation to shape our understanding of another.

The ability to reason with metaphors and analogies is a necessary component of

many high-level cognitive activities.  For example, natural language has long been

recognized to be a vast web of metaphors (Lakoff and Johnson 1980): this is true not

only of literature, but also of news articles, common conversation and even

technical or journalistic writing.  The opening sentence of a recent Wall Street

Journal article on trade agreements is built around a "politics is war" metaphor:

After a grueling two-month battle, the Clinton administration seemed poised to win a
cliff-hanger triumph on the North American Free Trade Agreement (WSJ, 11/17/93).

Metaphors and analogies permeate not only natural language:  My computer

interface uses the visual metaphor of a trash can icon to represent file deletion.

Lawyers interpret and apply case law through processes of analogy.  Doctors exploit

analogies between cases to make diagnoses and plan treat-ment.  Even mathematics

and physical science rest on a metaphoric foundation: Computer algorithms search

through "trees" or "spaces," using heuristics to "prune branches" or "climb hills."

Light moves in "waves," like water or sound.  Subatomic particles have "spin,"

"charm" and "color."  Artificial intelligence has developed formal models of

metaphor and analogy, and applied them in such areas as case-based reasoning

(Kolodner 1993), natural language understanding (Way 1991), inductive learning

(Russell 1989) and scientific discovery (Falkenhainer 1990).
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An essential problem for any formalization of metaphor or analogy is the

selection of a basis or source for the comparison.  Why did the author of the

newspaper article on trade agreements choose a "politics is war" metaphor over a

"politics is cooking" metaphor?  How do lawyers select the cases on which to build

their arguments?  How did physicists come to interpret the behavior of light in

terms of waves (like sound or water)?

This dissertation examines the problem of selecting an appropriate source for

analogical reasoning.  Based on a theory of metaphor1 known as the interaction

theory, it uncovers several shortcomings of existing retrieval techniques and

proposes an alternative approach that addresses these problems.  It then implements

this retrieval mechanism in a computer program, and evaluates its ability to

construct relevant, useful metaphors and analogies.

1.1 The standard model of analogical reasoning

Analogical inference refers to any process of reasoning about similarities: if two

situations are known to have certain properties in common, we may infer by

analogy that they are likely to share additional properties.  For example, physics

teachers often describe the behavior of electricity through an analogy with the flow

of water (figure 1).  They begin with a simple comparison between water flowing

through a pipe and electricity flowing through a wire, and help their students

extend the analogy to include comparisons between voltage and water pressure,

amperage and the quantity of water flowing through the pipe, etc.

1 Although the literature regards metaphor and analogy as distinct phenomena, there seems to be
little agreement on exactly how they differ.  The most common formulation holds that analogies are
comparisons of the form: "A is to B as C is to D," while metaphors are direct comparisons of the form "A
is B."  However, the initial selection of an analogical source requires establishment of a direct
comparison between A and C, which seems a lot like a metaphor.  Conversely, models of the way in
which metaphors effect systems of relations tend to be strongly analogical in flavor, with many
authors treating analogy as an underlying mechanism for constructing and reasoning about metaphor
(although this idea is somewhat controversial).  It is also possible that distinctions between the terms
are largely cultural: the term metaphor seems to be most common in research in natural language, while
analogy seems to dominate work in reasoning and problem solving.

This dissertation is about analogical reasoning.  However, I believe that there are essential,
underlying commonalties between these two forms of inference, and I have drawn freely on both
literatures in developing my theory of source retrieval.
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pipe

wire

The water/electricity analogy

Figure 1

Formally, we may think of an analogy as a mapping , or set of associations

between elements of a target domain and those of a source.  The source of an

analogy is a well understood problem, theory or situation: in the above example, a

theory of water flow is the source.  The target is a problem to be solved, a theory to

be extended or a situation to be understood: in this case, the target is the behavior of

electricity.  Analogical reasoning begins with an initial mapping between elements

of the target and source: electricity maps onto water, wires onto pipes, etc.  It then

extends the mapping to include additional elements of each domain: What is the

electrical counterpart of water pressure?  Of water flow?  The result is a transfer of

knowledge from the source to the target.

1.1.1 The structure of analogical reasoning

A general framework for analogical reasoning has been proposed by a variety of au-

thors, including (Hall 1989;  Kedar-Cabelli 1988;  Wolstencroft 1989).  These

formulations describe analogical reasoning as consisting of the following steps:

1. An analogy begins with the retrieval of an appropriate source.  In the

water/electricity example, the initial comparison was suggested by the

teacher.  In the absence of a teacher, analogical reasoners select a source

by matching properties of the target with those of candidate sources in

an effort to select the most similar. Central issues in source retrieval

15



include the choice of properties to use in selecting sources, techniques

for measuring the similarity between targets and sources, the

organization of memory to support efficient retrieval, and the use of

learning to improve retrieval over time.

2. The selection of a source establishes an initial mapping between it and

elements of the target.  Analogical inference extends this mapping to

include new properties and relations.  In the electricity example, an

initial mapping might associate water with electricity and pipes with

wires; analogical inference leads students to search for an electrical

counterpart to water pressure (voltage).

3. Most forms of analogical inference are not guaranteed to be logically

sound.  It is possible for a student to infer wrongly that electricity may

be stored in a wire, like water in a pipe.  Consequently, an analogical

reasoner must evaluate  its inferences, using additional knowledge or

empirical tests to do so.  When an analogical inference proves

incorrect, the reasoner may either repair the defective aspects of the

analogy, or begin again with a new source.

4. Finally, an analogical reasoner should learn from this process.  The

simplest type of learning saves valid extensions to the target domain.

More sophisticated approaches also improve retrieval, inference and

evaluation.

Nearly all analogical reasoners fit this basic framework.
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1.2 An interactionist critique of the standard model

The comparison theory of metaphor  (Black 1962;  Way 1991) makes explicit many of

the assumptions underlying the standard computational model of analogical

reasoning.  The comparison theory takes the common sense position that metaphor

is an act of comparing two objects in order to clarify and emphasize similarities be-

tween them.  Way (1991) characterizes the comparison theory as:

. . .  relying on some pre-existing similarity between the characteristics possessed by two
'like' objects.  These similarities are then made explicit by comparing all the
characteristics of the tenor [target] and vehicle [source] . . . (page 34)

According to the comparison theory, metaphors serve primarily as a means of se-

lecting properties in the target; the meaning of those properties is fundamentally

independent of the comparison.  The semantics of electrical voltage does not depend

in any way upon the analogy with water pressure; the analogy only helps to call our

attention to it.

In contrast, the interaction theory (Black 1962) gives metaphor a fundamental

role in establishing the meaning of concepts.  The interaction theory views

metaphor as a complex interaction between systems of relations in the target and

source that can lead to fundamental changes in our understanding of both.  The

interaction theory contrasts with the comparison view in a number of ways:

1. Under the interaction theory, the meaning of concepts is not fixed, but

evolves through their participation in a succession of metaphors.

Metaphor can actually cause the meaning of a concept to shift by

changing the system of relations surrounding it.  Metaphor does not

just detect similarities; it can also create them between objects

previously held to be dissimilar.

2. The interaction theory treats metaphor as involving entire systems of

relations in the target and source, with the relational structure of the

source acting as a filter to reorganize our understanding of the target.

This contrasts with the comparison view, which suggests that source

properties can transfer to the target on a one-at-a-time, individual basis.
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3. Whereas the comparison view treats information transfer as moving

exclusively to the target, the interaction theory also allows for

information to flow back to the source, resulting in changes to both

components of the metaphor.

Examination of a common metaphor reveals its fundamentally interactionist

structure.  Calling a sexist man a "male chauvinist pig," does not build on pre-

existing, "objective" similarities between sexists and pigs.  Instead, the metaphor

creates new notions of similarity that change our understanding of sexism by

associating it with other forms of crude behavior.  The metaphor does not work at

the level of individual properties, but rather transfers a whole system of negative

connotations from pigs to sexist men.  Further-more, the negative connotations we

associate with pigs do not stem directly from pigs themselves, but have evolved

from a whole history of comparisons with unpleasant human behaviors.  In truth,

pigs are highly intelligent creatures.  Aside from a fondness for cool mud on hot

days, they are not particularly dirty, and their legendary greed for food is really no

different from that exhibited by chickens, geese, cattle and other barnyard animals.

However, a long history of metaphors comparing pigs to sloppy eaters, greedy

businessmen and political extremists of every ideological ilk have transferred a

whole constellation of undeserved negative traits to these unfortunate beasts.  The

history of "human as pig" metaphors is an excellent illustration of the interactionist

theory.

The interaction theory raises a number of challenges to the standard com-

putational model of analogy.  This dissertation focuses on its implications for the

problem of source selection, questioning three common assumptions:

1. The separation of retrieval and inference.

2. Monotonic measures of similarity.

3. Memory organization as clustering.

The next three sections discuss these issues in more detail.
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1.2.1 The separation of retrieval and inference

The standard model treats source retrieval and inference as separate stages in

analogical reasoning: retrieval uses known  similarities to select an appropriate

source, and inference extends the analogy to include additional correspondences.  If

the interaction view is correct, and metaphors and analogies can alter the semantics

of both the source and target, then the separation of retrieval and inference rests on

an unresolved circularity: How can an analogical reasoner use similarity to select a

source if metaphor and analogy actually create notions of similarity?

Many computational models of source selection ignore this problem by using a

restricted set of properties to select sources and assuming that these properties will

be known for all sources and targets.  These properties com-prise a fixed retrieval

vocabulary.  Retrieval finds sources that have a sufficient number of these

properties in common with the target.  Analogical inference may transfer additional

properties to the target, but it cannot add to, remove from or change the

interpretation of this retrieval vocabulary.

This approach leaves source selection excessively reliant on the initial choice of a

retrieval vocabulary.  It limits the flexibility and adaptability of the retrieval

mechanism, and makes it hard to build analogical reasoners in domains like

empirical discovery, where too little may be known about the target domain to

define an adequate retrieval vocabulary.

In contrast, the interaction theory suggests that analogical reasoning should not

assume that all properties in a retrieval vocabulary are known for target problems,

nor should it assume that such vocabularies are fixed.  Instead, it should allow the

analogical reasoner to project relevant properties of promising sources onto target

problems during retrieval.  Beginning with currently recognized similarities

between the target and candidate sources, retrieval mechanisms should be able to

infer new similarities or re-evaluate existing similarities in choosing among

potential sources.  Instead of relying on a fixed retrieval vocabulary, this process

should be free to use any properties of sources and targets that may lead to the

selection of useful analogies.
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1.2.2 Monotonic measures of similarity

Most current models of analogy choose sources using the heuristic that the more

similar the source and target, the more likely the source is to support useful,

relevant analogical inferences.  Although this is a reasonable approach to source

selection, most analogical reasoners compute similarity as a monotonic function of

the number of properties two situations have in common: the more common

properties, the greater the similarity.

In holding that metaphors work on entire systems of relations, the interaction

theory suggests a greater role for context in determining similarity.  The similarity of

two situations depends upon complex interactions of goals, background

assumptions, inference strategies and interpretations.  Monotonic measures of

similarity cannot capture these contextual effects.  For example, there are situations

in which the importance of a property in determining similarity decreases given

additional  knowledge.  If I tell you that two people each weigh 200 pounds, you are

likely to infer that they have similar physiques.  If I also tell you that they are

married to each other and share the biological parentage of a child, you are less

likely to make this assumption.

This potential non-monotonicity suggests that similarity should be inferred

through qualitative reasoning about target and source interactions in the context of

a given target situation.  Source selection should take these contextual effects into

account.

1.2.3 Memory organization as clustering

Analogical reasoners organize memory to improve the quality and efficiency of

source retrieval.  This generally takes the form of a hierarchical index system or

discrimination network (figure 2) in which each index defines common properties

of a set of similar sources.  Indices found deeper in the hierarchy add constraints to

their parents and, consequently, point to more restricted sets of sources.

 Source selection matches target properties with those recorded in indices,

retrieving the sources stored under the best match.  In figure 2, retrieval has
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matched the target with the indicated index node based on their identical values for

p1 and p3; this leads to the retrieval of source1 and source2.  This is more efficient than

trying all possible sources and, given an appropriate index hierarchy, can be highly

effective in selecting relevant sources.
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Figure 2

There is a close relationship between index hierarchies and category taxonomies

in that each index defines a category of similar sources.  Many analogical reasoners

use clustering algorithms (Fisher and others 1991;  Michalski and Stepp 1983) to

create and maintain indices.  Clustering algorithms attempt to construct taxonomies

that maximize the similarity of items in the same category.  Typically, clustering

algorithms update the index hierarchy when adding new sources to memory.  A

common approach searches the existing hierarchy for the best place to insert the

new source, modifying the hierarchy if this addition causes any degradation in the

quality of the taxonomy.

This source-oriented approach to memory management ignores the reasoner's

successes and failures in solving target problems.  This works well if sources and
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targets can be described using a fixed, bounded number of properties: Clustering

finds those properties best able to distinguish sources, and creates indices that

provide the same results as an exhaustive search of candidate sources, although in a

more efficient fashion.  What happens, how-ever, if sources have an unbounded

number of given and inferable properties that may potentially be useful in

retrieval?  Clustering algorithms that require a priori bounds on the properties they

must consider in building index hierarchies cannot scale to such a situation.

Here again, the interaction theory suggests a solution: use successful metaphors

and analogies to determine which source properties were relevant in past problem

solving contexts, and construct indices using these properties.  This uses experience

to construct a retrieval vocabulary dynamically, and shifts the focus of memory

management from source-oriented clustering to experience-driven forms of

empirical learning.

1.3 An interactionist model of source selection

The above criticisms not only question the cognitive validity of standard

computational approaches to source selection, but also raise questions concerning

their scalability, generality and usefulness for building analogy-based problem

solvers.  Such analogical reasoners are excessively reliant on biases in the selection

and representation of retrieval vocabularies; they do not work well if these

vocabularies are inappropriate, or too little is known about the target to define

them.  Many application areas, such as learning and discovery, seem to require far

greater flexibility then can be provided by traditional approaches.

This dissertation proposes an interactionist model of source selection that

addresses the limitations of the standard approach.  The major components of this

model are:

1. The interleaving of retrieval and inference through assumption-based

retrieval.

2. The replacement of monotonic similarity measures with the use of context in

determining similarity.
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3. A shift from source-centered, clustering based memory organization strategies

to empirical memory management .

The next three sections discuss these points in more detail.

1.3.1 Assumption-based retrieval

Instead of treating retrieval and inference as distinct stages in a sequential process,

the approach developed in this dissertation interleaves them in a cycle of making

and evaluating plausible analogies.  Retrieval consists of the steps:

1. Choose an initial set of candidate sources by comparing the target with

the nodes in a hierarchical index.  Instead of requiring a complete

match with the index, match according to the following criteria:

If a property represented in the index is known for the target, they must

match.

If an index property is unknown for the target, transfer this property to

the target and allow the match.

2. Step 1 may produce multiple candidate matches, involving different,

potentially contradictory inferences about the target.  The second step

ranks these initial matches heuristically (see section 1.3.2).

3. Retrieve the sources stored under the index that produced the best

match, and construct analogies between them and the target.  Each

analogy may transfer additional source properties to the target as

needed for its solution.  If a particular source cannot be extended to

include an essential component of the target, eliminate it from

consideration and try the next candidate.

4. Evaluate the analogies produced in step 3 empirically.  If one of them

solves the source problem, quit; otherwise, try the sources stored under

the next matching index.  Repeat until finding a successful source or

exhausting the index matches.
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This approach, which I have called assumption-based retrieval can improve the

quality of source selection in situations where little is known about the target.  It

also lessens the retrieval mechanism's reliance on a priori restrictions on the set of

properties that may be considered in source selection, since it allows indices to use

properties that may not be known for the target.  Finally, as suggested in the

interaction theory, it allows the analogy to create similarities where none previously

existed through the inferences made in step 1.

1.3.2 The use of context in evaluating similarity

The above methodology relies heavily on heuristics to constrain initial matches,

guide analogical inference and rank candidate sources.  We may view these

heuristics as measures of target/source similarity.  Rather than using simple

quantitative similarity metrics, the interactionist view suggests that analogies

should be evaluated according to their effects on the overall, systematic structure of

the target problem.  For example, one of the heuristics used in this dissertation

attempts to construct a (partial) solution to the target problem using the knowledge

afforded by each candidate analogy, and ranks the sources according to the quality of

these partial solutions.  This replaces monotonic similarity measures with a

systematic approach that evaluates the similarity between targets and sources in the

context of potential solutions to the target problem.

1.3.3 Empirical memory management

Rather than updating memory structures when adding new sources, the retrieval

system developed in this dissertation updates its indices after it has constructed a

successful analogy.  It does so by examining the properties that were involved in the

analogy to find those that distinguish the successful mapping from the failed

candidates.  It then constructs a new index that uses these properties to access the

successful source[s].

This reduces the need for prior biases on the selection and representation of the

retrieval vocabulary.  Instead it uses the structure of the target problem to define the

relevance of source properties and bound the information that must be considered

when updating memory.   Note that this approach effects a limited form of bi-
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directional transfer as suggested by the interaction theory of metaphor.  Learning

conveys knowledge of the relevance of various source properties from the target

back to the source retrieval mechanism.

1.3.4 Conclusion

This dissertation implements these ideas in a computer program and evaluates its

performance on several test domains.  In designing and evaluating this program, I

have continued to be guided by the specific ideas and general spirit of  the

interaction theory.  In particular, the assumption-based retrieval mechanism

described in 1.3.1 allows candidate analogies to create similarity in light of unknown

knowledge.  If these hypothesized similarities lead to a satisfactory problem

solution, they may be saved in the index hierarchy (section 1.3.3) for future use.

In developing the heuristics outlined in 1.3.2, I was guided by the interaction

theory's view that metaphors and analogies focus on entire systems of relations.

Rather than using monotonic similarity metrics, the heuristics examined in this

work evaluate candidate analogies in the context of the whole target problem.

Perhaps the most interesting aspect of the interaction theory is its recognition of

bi-directional information transfer.  By using the experience gained in solving the

target problem to select properties that may be useful in choosing future sources, the

memory management scheme described in section 1.3.3 transfers knowledge of the

relevance of different properties from the target back to the source.  This knowledge

assists in the construction of effective index hierarchies.

1.4 The goals and focus of this research

The above discussion outlines an interactionist source retrieval algorithm, and

raises several questions that form the heart of this dissertation.  These questions

include:

1. How can we limit and assure the relevance of the inferences made about

the target during assumption-based retrieval?
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2. How can systematic properties of candidate analogies be used to measure

similarity?  In particular, how can a partial analogy be evaluated in the

context of a target problem?

3. What knowledge representation techniques can improve the efficiency

of this retrieval/inference cycle?

4. How can the resulting program learn from its experience?  How can it

best select properties for inclusion in its index structure?

5. Can we expect features that were relevant to one situation to be effective

in choosing a source for a different target?

This dissertation develops a model of source retrieval that provides one set of

answers to these questions.  It implements this model as a computer program, and

tests it on the problem of using analogies to interpret empirical observations.  This

problem is related to the case-based interpretation prob-lem described in (Kolodner

1993).  I have chosen it for its inherent challenges, its relevance to a number of

specific applications, and the particular demands it places on a retrieval mechanism.

The dissertation evaluates this program/theory along the following dimensions:

1. The effectiveness of the learning algorithm.  This evaluation follows

the standard machine learning approach of using independent training

and test data to test the learning algorithm's ability to generalize

acquired knowledge to new situations.

2. Comparisons of the performance of the retrieval algorithm with a more

traditional, clustering approach to memory management.

3. Measures of the algorithm's ability to scale as the source base grows.

4. Qualitative evaluations of the quality of analogies produced by the

retrieval mechanism.

5. The algorithm's generality.  This has been measured by evaluating the

algorithm's performance on three different test domains.
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1.5 Overview of the dissertation

This dissertation develops and evaluates the ideas put forward in this introduction.

Chapter 2 begins with an overview of computational work in metaphor and

analogical reasoning.  It focuses on the problem of source retrieval, discussing

current approaches in more detail and further developing the interactionist critique

of standard approaches to analogy.

Chapter 3 defines a computational model of an interactionist source retrieval

mechanism.  It begins with a discussion of one of the the application areas addressed

in this dissertation: the use of metaphor and analogy to interpret empirical

observations.  It then describes the architecture of SCAVENGER, a computer program

that I have written to formalize and test these ideas.

Chapter 4 evaluates SCAVENGER's performance on the problem of interpreting

tutorial examples of LISP function behavior.  Tests include measures of its

efficiency, scalability, correctness and ability to learn.  The evaluation also compares

SCAVENGER to a more traditional approach to memory organization.

Chapter 5 demonstrates SCAVENGER's application to a diagnostic problem, that of

finding bugs in children's basic arithmetic skills.  This chapter repeats many of the

tests done in chapter 4.

Chapter 6 provides a simple "proof-of-concept" demonstration of SCAVENGER's

use in reasoning about physical simulations.

Chapter 7 concludes the dissertation by summarizing the lessons of the

SCAVENGER experiments and considering the broader ramifications of this research.
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2

Analogical Inference and Source Retrieval

                                                                                                                                                                      

...And I hear it again:
It’s in Lu Ji’s Wên Fu, fourth century
A. D. “Essay on Literature” - in the
Preface: “In making the handle
Of an axe
By cutting wood with an axe
The model is indeed near at hand.”

Gary Snyder
Axe Handles

In its most general sense, analogical reasoning refers to any process of reasoning

about similarities: if two things are known to be similar in certain respects, we may,

by analogy, infer additional similarities between them.  Analogical reasoning has

been applied to a variety of applications including planning (Birnbaum and Collins

1988;  Carbonell 1983;  Sycara 1988), program synthesis (Amarel 1986;  Dershowitz

1983;  Williams 1988), problem solving (Kolodner 1993), natural language

understanding (Lakoff and Johnson 1980;  Lakoff and Turner 1989;  Way 1991),

machine learning (Falkenhainer 1990a;  Falkenhainer and Michalski 1990) and

scientific discovery (Shrager and Langley 1990;  Thagard 1988;  Hesse 1966).

This chapter examines the foundations of the interactionist model of source

retrieval and inference2 outlined in chapter 1.  It begins with an overview of

analogical inference (section 2.1).  This discussion stresses the techniques used to

limit analogical inference to plausible, relevant conclusions.  Section 2.2 examines

current approaches to source selection and memory organization, emphasizing the

determination of similarity and the organization of memory to improve the

efficiency of retrieval.  The final section of the chapter presents the interaction

theory of metaphor in greater depth, and uses it to further develop the dissertation's

criticisms of conventional retrieval and inference techniques.

2 Although the evaluation and repair of analogical inferences are important topics, they are outside
the central focus of this work.  Their treatment in the computer program that tests my theory is
straightforward, and I do not discuss them in depth.
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2.1 Analogical inference

Analogical inference (figure 3) begins with a target; this may be a set of observations

to be explained, a problem to be solved, a plan to be completed, an incomplete

theory that we would like to extend, etc.  The source of the analogy is a similar

explanation, problem solution, plan or theory.  Analogical inference transfers

additional components of the source (the shaded circles) to the target, attempting to

make useful, relevant and supportable inferences.

target before
analogy

target after
analogy

source

matching transfer

Analogical inference3

Figure 3

Evans's (1968) ANALOGY was the first analogical reasoning program, and it in-

troduced many of the ideas that remain central to the field.  ANALOGY solved simple

geometric analogy problems such as might be found on an intelligence test (figure

4).  It solved these problems by determining the series of operations (such as adding

3 Although the figure suggests that sources and targets are represented as graphs, using graph
isomorphism as a matching criterion, the ideas discussed in the text apply to other representations.
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or deleting components of a figure) needed to transform shape A into B (this

sequence of operations becomes the source of the analogy).  It then attempts to use

this sequence of operations to convert C (the target) into each of the possible

answers, selecting the alternative that involves the fewest modifications to the

original series of operations (3 is the correct answer in figure 4).

A 

is to

B

As

C

?is to

1 2 3 4

A geometric analogy problem

Figure 4

Evans's work established the viability of automating analogical reasoning, and

made use of several ideas that have proven important to the field in general and

this research in particular.  The most important of these is systematicity (section

2.1.2).  In choosing the best answer, ANALOGY operates on the entire sequence of

steps needed to explain the relationship between A and B.  This concern with

systems of relations is a central characteristic of analogy and a valuable source of

constraints on analogical inference.  By focusing on the original "A to B"

transformation, ANALOGY also exploits such pragmatic constraints as goals and

context to guide its inference (section 2.1.3).

2.1.1 Varieties of analogical transfer

An analogy is a mapping , or set of correspondences, between the system of relations

in the target and those of the source.  For example, the analogy between the atom

and the solar system might begin with the mapping of figure 5.  Analogical

inference extends this mapping to include additional properties, such as the
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existence of attractive forces in the atom as a counterpart to gravity in the solar

system.

Source Target
solar system → atom
sun → nucleus
planet → electron

An initial analogy between the atom and the solar system

Figure 5

Extending a mapping may lead to the inference of previously unknown target

properties and relations.  The view of analogies as creating and extending a

target/source mapping is extremely general, and can be instantiated in different

ways.  Kolodner (1988a) proposes a taxonomy of transfer techniques:

1. Transfer the system of relations from the source to the target on an "as

is" basis.  Here the operators and relations of the target can only map

onto identical source elements, but the analogy can match source

objects with any target object.  Essentially, this extends conventional

pattern matching algorithms to allow matches between unlike

constants.  Structure mapping (section 2.1.2) takes this approach.

2. Modify the source as necessary to adapt it to the target.  Simple versions

modify components of the source, effectively allowing relations and

operations to map onto different target elements but leaving the

structure of the source unchanged.  More sophisticated versions change

the relational structure of the source in such ways as adding steps to a

plan, reordering operations in a problem solution, etc.  Here, the

analogical mapping is implicit in the sequence of operations that adapt

the source to the target.  Evans's ANALOGY performed this type of

transfer, as does transformational analogy and similar approaches

(section 2.1.5).

3. Transfer the inference method used to solve the source.  Here, the

problem solver computes a solution to the target, using a source
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solution as a guide.  This guided reconstruction may be simpler than

trying to adapt the source solution or solving the target from scratch.

Derivational analogy (Carbonell 1986;  Carbonell and Veloso 1988;

Minton 1988) exemplifies this approach (section 2.1.3).  Although

derivational transfer obscures the notion of analogies as mappings, it

does establish correspondences between goals, subgoals and initial

problem conditions.

4. Create an abstraction that describes both the target and the source, and

apply it to the target.  Reuse of this generalization can also improve

future inferences.  Here, the target/source mapping is implicit in the

generalization of corresponding objects.

An important characteristic of nearly all forms of analogical inference is its lack

of soundness: analogy cannot guarantee the truth of its inferences.  Although the

ultimate test of validity must be empirical, it is seldom feasible to generate and test

all possible analogies.  Analogical reasoners use heuristics to produce plausible

inferences: those with some support in experience or theory.  Another property of

analogical reasoning is its complexity: Unconstrained analogies can produce an

explosion of potential inferences.  The design of heuristics to assure the tractability

and plausibility of analogical inference is a central problem for theories of analogical

reasoning.  The remainder of this section discusses a number of heuristics that are

commonly used to constrain analogical inference.  These are:

1. The preservation of the systematic structure of the source.

2. The use of pragmatic concerns to select analogical inferences that will be

likely to be useful in solving the target.

3. Type constraints on analogical mappings.

4. The use of heuristic operators to modify sources to fit the target.

5. The use of learned abstractions to constrain future analogies to fit

patterns that have proven successful in the past.
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2.1.2 Systematicity and analogical inference

An essential strength of metaphors and analogies is their ability to transfer whole

systems of relations from the source to the target in a single comparison.  Lakoff and

Johnson (1980) point out that the purpose of metaphor is to convey the global

structure or gestalt of a domain: when we use the meta-phor, “argument is war,” we

transfer the systematic structure of war to the process of argument.  Metaphors and

analogies play a similar role in establishing a conceptual framework for scientific

discovery (Hesse 1966;  Rothbart 1988).  Systematicity is central to the evocative

power of linguistic metaphors.  It is widely discussed in the literature on metaphor

and analogy (Falkenhainer 1990a;  Falkenhainer and others 1989;  Gentner 1983b;

Gentner and Stevens 1983;  Helman 1988;  Lakoff and Johnson 1980;  Lakoff and

Turner 1989;  Vosniadou and Ortony 1989).  The interaction theory of metaphor

focuses heavily on systematicity (section 2.3).

The systematic structure of analogies not only offers expressive benefits, but also

can be a source of contextual constraints on analogical inference.  Structure mapping

theory (Falkenhainer and others 1989;  Gentner 1983a;  Gentner 1983b) is one of the

earliest and clearest examples of the use of systematicity to constrain analogical

inference.

High-quality analogies transfer richly connected systems of relations from the

source to the target.  For example, an analogy such as “the atom is like the solar

system,” transfers a rich system of causal relations to the target; this richness is what

makes it useful in explaining the target domain.  In contrast, the comparison “this

flower is like the sun” would generally be taken to communicate superficial

similarities: the flower, like the sun, is round, yellow and associated with summer.

Structure-mapping theory constructs high-quality analogies in an efficient manner

by focusing on those components of the source that are most indicative of its

semantic structure.  It implements this heuristic through a set of syntactic biases on

representation and inference.  These include:

1. A preference for mappings that transfer relationships over those

involving properties of objects.  Structure mapping formalizes this as a

distinction between unary predicates (properties) and predicates of a
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higher arity (relations).  In the atom/solar system example of the

previous section, relations such as larger-than(sun, earth) and orbits-

around(sun, earth) would more likely be useful in constructing an

explanation of observed behavior, and are preferred over unary

predicates like hot(sun).

2. Preservation of relations. If a relation exists between two objects in the

source, then infer the same relation between corresponding objects in

the target:

orbits-around(sun, earth)  -> orbits-around(nucleus, electron)

3. Systematicity.  Higher-order relations (relations that take other re-

lational sentences as their arguments) have a preference in the

mapping.  Causes is typical of higher-order relations. For example,

analogical inference would focus on the source rule:

causes(larger-than(sun, earth), orbits-around(sun, earth))

leading to the inference:

causes(larger-than(nucleus, electron), orbits-around(nucleus, electron))

Winston (1980; 1986) has also explored the use of explicitly represented sys-

tematic constraints on analogical inference through a focus on causal relationships

in constructing mappings.

Discussion: Syntactic approaches to systematicity

Systematicity, through its use of contextual, structural information about the source

(and target), is a powerful source of heuristics to constrain analogical inference.

However, many attempts to formalize systematicity constraints are excessively rigid

and reliant on syntactic biases.  In the previous example, structure mapping

eliminated hot(sun)  from consideration under the heuristic of favoring relations of

arity greater then 1.  On the face of it, this is a reasonable interpretation of

systematicity; unfortunately, it is excessively dependent on a priori representational

biases and leaves critical issues unexplained.  For instance, if we had represented

this property as temperature(sun, hot), structure mapping could produce different
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inferences.  Also, while the property hot(sun)  is not relevant to descriptions of the

structure of the atom, large(nucleus) is.  Structure mapping theory does not specify

an adequate criterion for selecting one representation over another.

A theory of analogy should not rely on unexplained representational biases, but

should produce the same results for any reasonable representation of target and

source.  By "reasonable," I mean that the representation should be sufficiently

expressive to capture any semantically important distinctions: an analogical

reasoner cannot transfer causal relationships to the target if the representation

language does not include a notion of causality.  Systematicity constraints should

not be encoded in a rigid syntactic fashion but should be derived from problem

solving contexts or past experience.  The other approaches considered in this section

explore these alternatives.

2.1.3 Pragmatic approaches

The discussion of analogical reasoning in (Holland et al. 1986) criticizes structure

mapping for failing to account for goals and other contextual constraints in guiding

analogical inference.  Although acknowledging the importance of systematicity,

Holland et al. are critical of attempts to encode it in the syntax of a representation,

arguing that this ignores these pragmatic concerns.

A common way of exploiting pragmatic constraints is to transfer the goal of the

target problem to the source domain, solve the goal for the source, and transfer the

solution back to the target.  An alternative approach selects a previously generated

source solution by matching on goals.  This focus on goals selects sources that may

be useful in solving the target problem.

On the face of it, pragmatic approaches would seem to select sources with greater

relevance to the target.  However, proponents of structure mapping counter that

goal-based constraints are just higher-order relations that can be syntactically

encoded in a representation.  Novik (1988) further examines this debate.

Kedar-Cabelli (1988) formalizes the pragmatic approach, integrating EBL and

analogical reasoning in her purpose-directed analogy.  In explaining an observation

in a target domain, purpose-directed analogy first constructs an explanation of a
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similar instance in a source domain; transfer then operates on this explanation.

Greiner (1988a) incorporates a form of pragmatic constraints in his requirement that

analogies be useful.  An analogy is a useful extension to a theory if there exists a goal

that the theory cannot prove, but that can be proved by the union of the theory and

its analogical extensions.

Carbonell has argued that analogy should consider the reasons why decisions

were made in solving the source problem (Carbonell 1986;  Carbonell and Veloso

1988).  Derivational analogy treats source solutions as sources of strategic

information.  This requires that each node in the source be annotated with the

justification for applying its chosen operator, a description of the initial portions of

paths that were tried and failed, and the reasons for these failures (figure 6).

Construction of a solution in a target domain proceeds stepwise, first mapping the

start state of the source solution onto the start state of the target problem.  At each

stage, the decision made in the source, along with these justifications, provides

guidance for the next step in constructing a solution of the target.  Derivational

analogy applies a strong form of pragmatic constraints to analogical transfer.

Failure

Failure

Justification

Justification

Justification

An annotated source used in derivational analogy

Figure 6
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Case-based reasoning (CBR) is a variant of analogical reasoning that is widely

used in problem solving, planning and expert systems (Hammond 1989b;  Kolodner

1988;  Kolodner 1993).  A case-based reasoner solves new problems by adapting and

reusing solutions to previously solved problems.  CBR differs from analogical

reasoning in two ways: One is its concern with instances of a problem solution,

rather than more general knowledge.  Case-based reasoners also tend to work within

a single domain, where analogies often cross domains.4  Case-based reasoners often

exploit pragmatic constraints.  One reason for this is their frequent emphasis on

problem solving; another is the fact that it is straightforward to match target and

source goals if transfer operates within a single domain.  Case-based reasoners

exploit both systematic and pragmatic constraints through their focus on entire

source cases in analogical transfer, and their reliance on target goals in source selec-

tion.  Schank's (1982) dynamic memory theory places heavy emphasis on the use of

goals in source retrieval, and many CBR systems build explicitly on this theory

(Kolodner 1993;  Kolodner 1983).  Section 2.2 further discusses the use of goals and

context in retrieval.

Discussion: Goals and relevance

Through their focus on goals in developing an analogy, pragmatic approaches add

relevance criteria to the structural constraints exploited by structure mapping.  It is

telling that so many successful efforts to exploit goal-based constraints have been in

case-based reasoning.  Because CBR tends to work within a single domain, it is more

feasible to retrieve a source by matching on goals.  Cross-domain analogies require

more complex determinations of similarity, and may have a harder time choosing a

relevant source.

There are other ways of implementing pragmatic constraints.  Section 2.2.1, for

example, discusses two systems (MEDIATOR and HYPO) that use broader contextual

knowledge (in addition to goals) to determine source relevance.  This dissertation

explores yet another approach to determining the relevance of analogies.  The

problem of interpreting empirical data, which is addressed in this research, does not

4 Is analogical reasoning is simply a higher-order form of CBR?
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offer a single, clearly defined goal.  Instead, the "goal" of an analogy is a high-quality

explanation of a set of target observations.  This replaces a focus on explicit goals

with a preference for analogies that yield simple, unifying and empirically verifiable

explanations of target phenomena.  One of the central issues explored in this work is

the problem of combining empirical validation, qualitative heuristics (such as a

preference for simple answers), and goal-centered strategies in the selection of

analogical sources.

2.1.4 Type Constraints on Analogical Mappings

There is a strong relationship between categorization and analogy in that both

depend upon similarity: Analogies transfer knowledge between similar objects,

while categories gather similar objects together.   It is reasonable that analogies

should use taxonomic information to determine similarity.

For example, assume we are exploring an analogy between electricity and water.

Mapping A of figure 7 is clearly correct.  A plausible criterion for eliminating

mapping B is that it associates a quantitative value (voltage) with a non-numeric

object (pipe).

electricity water

wire pipe

voltage pressure

electricity water

wire pipe

voltage pressure

A B

Alternative analogical mappings

Figure 7

We may implement this constraint by favoring mappings between objects that have

a common super-type low in a type hierarchy.  The closer the common parent, the

more similar are the objects, and the more plausible is the mapping.

Way (1991) holds that the meaning of a metaphor is found in the most specific

generalization of the metaphor's components.  For instance, the meaning of the

metaphor "Bubba is a pig," results from the fact that both Bubba and pigs belong to

the category of sloppy eaters.  She addresses the problems of tangled hierarchies by
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using a form of pragmatic constraints: the context of the metaphor acts as a filter to

select a relevant portion of the type structure.

There is a strong two-way relationship between analogy and categorization.

Turner (1988) has pointed out that the same notions of similarity underlie both

phenomena.  We do not recognize similarities between elements of a category as

analogical because the category structure reifies the comparison: what we recognize

as an analogy is an expression of previously unrecognized similarities between

members of different categories.  Because it redefines category boundaries, analogy

leads to a new understanding of the target situation.  When an analogy, such as

“argument is like war,” is used often enough, it eventually forms a new category of

experience whose analogical origins are forgotten.

Discussion: Types and context

The use of type information in constraining analogical inference reflects the view of

class taxonomies as highly compressed representations of more complex, systematic

notions of similarity.  There are, however, a number of difficulties in exploiting

taxonomic information for analogies.  One of these is accommodating notions of

context in using types.  Way (1991) addressed this problem by using problem specific

information to select portions of a complex, tangled hierarchy for use in interpreting

metaphors.

Another problem is the chicken-and-egg relationship of categorization and

analogy.  Categories capture notions of similarity underlying analogies, and

analogies lead to the formation of new categories.  How can we implement this

interaction formally?  Machine learning techniques have the potential to mediate

this interaction by building taxonomies that reflect successful analogies; this is the

approach taken in this dissertation (chapter 3).

2.1.5 Operator based source adaptation

A powerful form of analogical inference uses transformation operators to adapt a

source to a target.  Here, the analogical mapping is implicit in the sequence of

modifications performed on the source.  Transformational analogy (Carbonell 1983)

is one of the first programs to solve new problems by adapting successful solutions
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to similar source problems.  Operators modify solutions in such ways as inserting or

deleting steps, re-ordering steps, splicing new solutions into the source, changing

the bindings of parameters, etc.  These operations define a space (T-space) in which

states are entire problem solutions (figure 8).  Transformational analogy searches

this space, using means-ends analysis to choose the transformation that moves the

solution closer to the target problem.  This work exerted a strong influence on the

development of analogical reasoning by showing how complex problem trans-

formations could be implemented as search, and how weak heuristics, such as

means-ends analysis, could be applied to analogical reasoning.

Original Space

T-Space

Analogical reasoning as search through T-space (Carbonell 1983)

Figure 8

Case-based reasoners often rely upon rich sets of case-adaptation operators to

apply source cases to new problems.  Kolodner (1993) proposes a taxonomy of

transformations; these include:

1. Substitution methods.  These are operators for replacing components of

a source solution with items from a target problem.  They include

general operators for re-instantiating sources, rules for adjusting values

of numeric parameters, and similarity-based substitution rules such as
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allowing an object to be replaced with an object that is close to it in a

semantic network.

2. Transformation methods that make changes in the structure of a source

solution.  "Commonsense" transformation operators perform weak,

syntactic modifications on a source, such as adding, deleting or re-

ordering operations (transformational analogy uses such operators).

This contrasts with methods that exploit domain specific adaptation

and repair operators.  Model-guided repair is the strongest

transformational method, reasoning with a causal model of the target

domain to adapt sources to targets.

3. Derivational replay is a variation on the derivational analogy method of

section 2.1.3.

Different case-based reasoning systems provide variations on these basic themes.

See Kolodner (1993) for a more thorough discussion.

There are a number of systems which, while not strictly analogical in nature,

have explored the use of transformations on problem solutions.  AbE (O'Rorke et al

1990) and COAST (Rajemony 1990) have applied the transformational approach to

the theory-formation problem; working in the domain of qualitative process theory

(Forbus 1984), a general language for describing the qualitative changes and

interactions of physical processes.

The PRODIGY learning system uses operator refinement  to repair incomplete

theories in planning domains (Carbonell and Gil 1990).  Operator refinement

analyzes failed plans or plans that suffer from inefficiencies or goal conflicts due to

poor ordering of operations.  It repairs the theory by acquiring new pre- and post-

conditions on misapplied operators.  Where it detects multiple possible

modifications, it plans experiments to select the best of these.

Mitchell's (1993) Copycat system takes a novel approach to operator based

analogy.  Copycat interprets analogies between letter strings, solving problems of the

form abc -> abd as ijk -> ?.  The program constructs solutions through a large

number of applications of extremely fine-grained operators.  The application of
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relevant operators is partly governed by various stochastic values that cause the

algorithm to vary its solution strategies across repeated trials on identical problem

instances.  This approach makes Copycat's behavior flexible, and capable of human-

like variations in problem solving strategy and the solutions it finds.

Discussion: Domain specificity in operator-based approaches

Although operator-based methods are a powerful form of analogical reasoning, they

are hard to apply to cross-domain analogies, since even seemingly weak operator-

based methods make domain specific assumptions.  For instance, PRODIGY's

operator refinement method is specific to planning problems.  AbE and COAST 's

operations work with qualitative process theory, which incorporates assumptions

about qualitative physics.   Wilkins (1990) uses meta-operators to propose

modifications to an incomplete, inconsistent or incorrect theory, noting that while

these meta-operators do not incorporate domain-level semantics, they are

specialized to a single class of domains: those performing heuristic classification

(Clancy 1985).  Copycat encodes domain specific assumptions in its "slipnet" a large

semantic net-like representation of program knowledge.

This reliance on domain knowledge is both a source of the power of operator-

based approaches, and limitation on their generality as a theory of analogy.  Machine

learning may offer a means of bridging this gap by explaining the empirical origins

of such operators.  The next section examines the role of learning and abstraction in

analogy.

2.1.6 Analogy and Abstraction

Perhaps the most powerful source of constraints on analogical inference is the

generalization of patterns of successful analogy.  In a series of experiments on

humans, (Gick and Holyoak 1983;  Holyoak 1984;  Holyoak 1985) discovered that an

abstract understanding of significant features of an analogy improves its detection

and use.  Gick and Holyoak conjectured that humans develop abstract schemas for

classes of similar problems which help them find and use productive analogies.

Subsequent experiments corroborated this conjecture.  The use of abstractions in
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analogy has been formalized in several ways, including the use of meta-logics and

schemas.

Russell and Davies offer a formal model of abstractions in analogy in their

theory of determinations   (Davies 1988;  Davies and Russell 1987;  Russell 1988;

Russell 1989).  Determinations represent knowledge of relevance as a form of

functional dependency.  For example, if I know that Pierre comes from France and

speaks French, I may conclude that since Catherine is also from France, she will

speak French as well.  How did I know that I could use the analogy between Pierre

and Catherine's country of origin to infer her native language, while ignoring the

difference in their gender?  Davies and Russell argue that analogies require prior

knowledge of the relevance of problem features to specific goals: country of origin

determines language, but gender does not.

A determination is a logical schema that specifies the relevance of certain

features to others.  Formally, the knowledge that p determines q is written

(underlined variables indicate sets of variables):

p(x, y)   q(x, z)

and is defined as:

p(x, y)   q(x , z) iff
∀ w, x  [[∃ y  p(w, y) ∧ p(x , y) ⇒ ∀ z [ q(w, z) ⇔ q(x, z) ]]

In defining the form of object-level inferences, determinations represent meta-level

constraints on allowable analogical inferences.  This allows the logically sound

inference:

[p(x ,y)     q(x ,z)] ∧ p(s, a) ∧ p(t , a) ∧ q(s, b) ⇒ q(t , b)

For example, assume that we have the prior knowledge that nationality

determines native language:

nationality(x, w)   native_language(x, z)

Assume we know that Pierre is from France and speaks French, and that Catherine

is from France:

43



nationality(pierre, france)
native_language(pierre, french)
nationality(catherine, france)

By expanding the determination and making appropriate substitutions we obtain:

nationality(pierre, france) ∧ nationality(catherine, france) ⇒
[native_language(pierre, french) ⇔ 
native_language(catherine, french)]

This leads to the inference: native_language(catherine, french).

Determinations are abstract constraints on analogical inference.  They also

provide a computational perspective on the use of background knowledge in

induction proposed in (Goodman 1954).  Ironically, the primary problem with

determinations is their goal of providing a logically sound model of analogy.  This

excessively restricts analogical reasoning: To be effective in many domains,

analogies do not need to be logically sound, they need only to be an effective source

of plausible, testable and (if needed) repairable conjectures.

A number of researchers have taken abstraction-based approaches to analogy.

Greiner’s (1988a;  1988b) work in abstraction-based analogy uses abstract

specifications of classes of laws to mediate construction of an analogy between

instances of the abstraction.  For example, an abstract schema for flow theories may

mediate future analogies between hydraulic systems and electrical circuits.

MEDIATOR (Kolodner and others 1985) is a case-based reasoner for resolving disputes.

It organizes source cases under generalized episodes, abstract descriptions of classes

of similar source cases.  The generalized episode describes the common structure of

the sources; pointers to individual sources describe differences between them and

the generalization.  Mediating the mapping through the generalized episode

provides strong constraints on inference.  Note that the frame structure of

generalized episodes also implements a form of systematicity constraints.

Shrager's work with views showed how abstractions of concepts may be useful in

constructing domain theories (Shrager 1987;  Shrager and Langley 1990).  Shrager

demonstrated their use on the problem of discovering how to program a Big-Trak.

The Big-Trak is a programmable toy tank that allows the user to enter sequences of
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instructions, such as go-forward, turn, stop, etc.  A program called IE constructed a

model of the Big-Trak's behavior by instantiating and combining views: these are

abstract definitions of computer concepts including memory, stack manipulation,

clock, etc.  IE selects relevant views and integrates them into the theory by

instantiating them with elements of the problem domain.

Discussion: Abstraction and learning

Abstractions mediate analogy by providing templates for a preferred mapping; this

improves efficiency and eliminates many erroneous analogies.  A plausible form of

learning in an analogical reasoner is to store abstract patterns of analogy, solving

future problems through instantiation of appropriate abstractions, rather than

construction of a new analogy.

The acquisition of useful abstractions raises a number of interesting questions.

Abstractions of successful analogies must capture their systematic structure:  What

syntactic operations can be used to assemble appropriate structures?  How can a

learner determine which elements of an analogy to leave out in constructing an

abstraction?  What heuristics can help it to construct abstractions that will be of use

in future analogies?  How can such abstractions be integrated into a source retrieval

system?  The learning mechanism of chapter 3 addresses these problems.

2.1.7 Summary and conclusion

This section examined a variety of approaches to analogical inference.  Although

these techniques differ in their specific formulations, a set of common themes run

through nearly all models of analogy.

Systematicity is one of the most important characteristics of analogical reasoning:

A single comparison conveys an entire system of assumptions and relations from

the source to the target.  Systematicity permeates nearly all approaches to analogy:

Structure mapping favors higher order predicates in constructing a mapping;

MEDIATOR uses frame like structures to guide inference; other approaches, such as

purpose-directed analogy, transformational analogy and many forms of case-based

reasoning implement systematicity constraints by analogizing on entire

explanations or problem solutions.
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The pragmatic criticism of structure mapping theory is less a rejection of

systematicity then a recognition that purely syntactic approaches cannot account for

context-sensitive aspects of problem structure: analogies operate on systems of

relations, but the structure of those systems depends upon a problem solving

context.

Systematicity underlies other constraints on analogy: type hierarchies represent,

in a shorthand manner, families of similar objects.  While the underlying

justification of the similarities underlying them might be a complex, systematic

explanation, the taxonomy conceals this rationale and allows a reasoner to apply it

in a highly efficient manner.  Transformation operators also encode more complex,

systematic constraints implicitly.

The last type of constraint examined, abstractions of common patterns of

analogies, synthesizes systematic and pragmatic constraints.  Abstractions represent

systems of operators or relations as derived from problem solving experience.

The SCAVENGER algorithm (chapter 3) exploits all of these constraints in its

approaches to both retrieval and inference.

2.2 Source selection and Memory Organization

The selection of an appropriate source is a central problem for analogical reasoners.

Since it deals with similarity instead of identity, analogy cannot rely upon

straightforward pattern matching algorithms such as unification.  In the most

general sense, similarity depends upon influences as diverse as the representation of

source and target problems, the past experience of the reasoner, and the goals and

assumptions of the target problem.  Since targets are, by definition, incompletely

understood, retrieval must work with partial knowledge.  Retrieval can be made

more efficient by a memory organization that supports detection of similarities, but

any such organization must deal with these complexities.  Source selection raises a

number of problems:

1. Intuitively, similarity would seem to depend upon the number of

features two situations have in common, but how do we account for

the fact that some features may be more important than others?  How
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do we take the goals and context of the target problem into account in

interpreting similarity?

2.  A retrieval mechanism cannot consider all properties of the source and

target in computing similarity; how can it select an appropriate subset

of properties to consider in a given problem?  Is it better off using more

easily evaluated, but weakly predictive properties, or should it pay the

cost of managing a richer but more complex retrieval vocabulary?  Are

we justified in efforts to "hard wire" a retrieval vocabulary in an ana-

logical reasoner, or is the selection of appropriate properties inherently

dynamic and context dependent?

3. What role does the category structure of source and target domains play

in retrieval?  Conversely, what role do analogies play in the formation

of taxonomies?

4. While similarity underlies source selection, evaluating a target's

similarity to every possible source is not computationally efficient.

Analogical and case-based reasoners generally use indexing systems to

access candidate sources more efficiently.  How can a retrieval

mechanism best select and represent indices?  How can it adapt these

memory structures to improve performance over time?

The remainder of this section examines these issues in more detail.

2.2.1 Retrieval vocabulary

For reasons of efficiency, retrieval cannot afford to consider all properties of the

target and source problems during retrieval.  In realistic domains, objects can have

an unbounded number of known or inferable properties.  As stated in (Kolodner

1993):

. . . a case's indexes are a subset of the case's description or representation.  Thus, index
vocabulary is a subset of the vocabulary used for full symbolic representations of cases.
(page 196)
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Although some restrictions on a retrieval vocabulary are necessary, in many

analogical reasoners, the set of properties that can be used for source retrieval is

initially defined by the system's designers, and does not change through use.  It is

reasonable to criticize such systems for their reliance on biases embedded in the

retrieval vocabulary.

Many theories of analogy justify this approach as in terms of a distinction

between surface and deep  knowledge (Gentner 1989;  Ross 1989).  Surface features,

often taken to correspond to direct perceptions, are readily accessible properties used

for selecting source cases.  Deep knowledge reflects the more complex, systematic

structure of a domain; this structure is often implicit, and only becomes apparent

when knowledge is applied to actual problem solving.  For example, an explanation

or proof of a theorem makes a portion of the deep structure of a theory explicit; a

plan reveals part of the deep structure of a planning domain.

There is evidence that humans use more readily accessed, perceptual features of

target problems for source retrieval (Gentner 1983b;  Gentner 1989).  However, while

surface-deep distinctions may be meaningful in specific situations, they do not

reflect a global, a priori division of knowledge.  Such distinctions are highly context-

specific, depending upon the background knowledge, goals and assumptions

currently available to the reasoner.  Uemov (1970) has criticized a priori distinctions

between deep and surface knowledge , stating:

When an analogy is successful it is called "deep", "strict", "scientific" etc.  When it does
not work it is called "superficial", "loose", "unscientific" etc.  Naturally there is a
question as to how those two types of analogy can be distinguished before the practical
realization takes place.  What are the criteria which permit this distinction?

Although surface features are generally associated with perception, perception

requires interpretation.  Different people see different things in the same situation.

For instance, if an experienced user sees a new computer system, their "surface

features" might include observations of the type of operating system, user interface

or mass storage; someone who was not computer-literate might initially notice the

size and color of the monitor.  Experts develop a more selective and informed

notion of surface features.  Hammond (1989a) argues that an analogical reasoner

should index sources under functional information about their role in problem
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solving, rather than on the basis of a priori distinctions between deep and surface

knowledge.  Gick and Holyoak's work on human analogy supports this insight (Gick

and Holyoak 1983;  Holyoak 1984;  Holyoak 1985).  After being exposed to multiple

analogies and being encouraged to abstract out their common features, subjects

become better at applying the sources to future problems.  This implies that these

abstractions of "deep" structure become easily accessible in memory and serve as

retrieval cues for subsequent analogies.

The inadequacy of a priori deep/surface distinctions is even more evident in

light of the use of analogies to transfer knowledge across problem domains (such as

the water/electricity example of chapter 1).  There is no strong likelihood that

different domains will share common surface features: source selection must exploit

the semantic structure of both the target and source.  Birnbaum and Collins (1988)

argue that cross-domain retrieval is enhanced by acquiring abstract structural

information, and using this to index cases; they give the example of using abstract

categories of strategies to enable the transfer of strategies from one game, such as

chess, to another, such as baseball.  Seifert (1988) suggests that cross-domain source

retrieval should use abstractions of target goals for retrieval.  ACCEPTOR (Leake 1991)

applies case-based reasoning to the problem of detecting anomalies in stories; it uses

a rich vocabulary of story failure types to index source stories.  This taxonomy of

failures reflects deep knowledge of the problem domain.

Discussion: The problem of fixed retrieval vocabularies

A retrieval vocabulary cannot be defined in an a priori fashion, but must be learned

through experience.  Retrieval mechanisms should be constantly on the lookout for

properties that can be used to select relevant sources, and add these to its index

hierarchies.  Instead of relying upon priori syntactic biases, source selection must be

able to consider any knowledge, whether represented as relational, systematic

knowledge or as simple features.

Several systems have addressed this problem.  For instance, MEDIATOR

(Kolodner and others 1985) organizes instances under generalized episodes: these

are frame structures that describe the organization of a class of cases.  Thompson and

Langley (1991) have further explored the use of structured representations in
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concept formation.  In an approach that is related to the retrieval mechanism

described in chapter 3, HYPO (Ashley 1988;  Ashley and Rissland 1988a;  Ashley and

Rissland 1988b) integrates retrieval and inference in a process of explicitly reasoning

about the relevance of candidate sources.

These observations raise a number of questions that are central to this research:

1. What are the criteria for acquiring and changing the retrieval vo-

cabulary?

2. How can newly discovered retrieval cues be integrated into an indexing

system?

3. Many highly predictive source-properties may not be among the

information given in the statement of target problems.  Such

properties may be the product of extensive inference in the source

domain, and may not be known for a poorly understood target.  Are

there benefits to indexing sources under properties that may not be

known for target problems?  How can such properties be used in

retrieval?

2.2.2 Numeric measures of similarity

There is no way to guarantee that a source will be relevant, complete and correct in

solving a target problem, except to use it to solve the target, and evaluate the results.

However, analogical reasoners limit the sources so considered under the heuristic

that sources that share known similarities to the target have a strong likelihood of

sharing additional similarities.

A reasonable definition takes the similarity of two objects to be a function of the

number of features they have in common.  A simple approach represents objects as

attribute vectors; these are sequences of attribute/value pairs: [a1=v1, a2=v2 . . . an =

vn].  Each attribute vector designates a point in an n-dimensional attribute space; the

closer two points are in this space, the greater their similarity.  The distance between

two attribute vectors is a function of the individual distances between their values

for each attribute: For numeric attributes the distance between two values is simply
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the absolute value of their arithmetic difference.  A common measure of the

distance between qualitative attributes gives a value of 1 if the values are different, 0

otherwise.5  Given the distances between individual attributes, we may compute the

overall distance between two attribute vectors.  An obvious approach computes this

as the Euclidean distance in attribute space.  A simpler method sums the distances

between individual attributes.  Niiniluoto (1988) has measured similarity as

k/(k+m) where k is the number of features two objects have in common and m is

the number on which they differ.

Numeric measures of similarity work adequately for simple domains but are

limited in their ability to address several important issues.  One of these concerns

the salience of features.  All features are not equally important; some may be more

predictive of a source's usefulness than others.  A simple model of salience

measures total similarity as the weighted sum of the similarities of individual

features, giving higher weights to more salient features.

Discussion: Similarity and context

Although numeric models of similarity have grown quite sophisticated, there are

limits to what can be done without using qualitative reasoning.  In particular,

defining similarity to be a function of the number of properties objects have in

common does not extend to domains in which objects can have an unbounded

number of properties (Watanabe 1969).  Using such similarity metrics requires that

the universe of possible properties be bounded by some notion of relevance, usually

to the goals of the target problem.  This implies that similarity measures must

depend upon some form of qualitative inference concerning the relevance of

various properties.  However, in implementing these inferences, many analogical

reasoners rely upon a priori representational bias to bound properties that must be

considered.  One of the primary goals of this research is to explore the use of

empirical learning to define a retrieval vocabulary dynamically.

5 Approaches that combine numeric and qualitative attributes usually normalize the distances between
numeric attributes to a range between 0 and 1.
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2.2.3 Qualitative approaches to inferring similarity

Several systems use domain-knowledge to construct a qualitative explanation of

why things are similar.  MEDIATOR (Kolodner and others 1985) uses generalized

episodes, abstract descriptions of a family of cases, as indices in source retrieval.

Individual cases are associated with the appropriate generalized episode, along with

a record of any differences between the case and the generalization.  This approach,

influenced by a theory of human memory organization (Schank 1982), incorporates

goal and contextual knowledge in case selection.  Learning creates new

generalizations to represent similarities between successful cases.  On failure,

MEDIATOR explains the reasons for the failure, and uses these explanations to find

features that discriminate failed and successful sources.  It then adds these properties

to a new generalized episode.

HYPO (Ashley 1988;  Ashley and Rissland 1988a;  Ashley and Rissland 1988b)

integrates analogical retrieval, reasoning and justification in a process of reasoning

about the similarity of cases.  HYPO is a case-based reasoner working in the domain

of trade secret law.  It maintains a library of legal precedents, indexing cases by a set

of dimensions.  A dimension is one way of arguing about a case: it identifies features

of the case that can define similarities and differences with a new problem in the

context of a particular argument.  In effect, a dimension defines the salience of

features in the context of a specific argument.  HYPO retrieves precedent cases by

matching dimensions of the new problem with dimensions of precedents.  Since a

dimension can match a case partially,  HYPO organizes these matches into a claim

lattice, a partial ordering of the "pointedness" of precedent cases: the greater the

number of features matching a dimension, the more on point is the precedent.

HYPO reasons with this lattice to support its case and rebut counter arguments.

PI (Thagard 1988) uses spreading activation through a network of concepts to

construct analogies.  Spreading activation is a strategy for searching an associative

memory, such as a semantic network.  Beginning with a goal concept, "activation"

spreads from concept to concept along associations, searching the network in a

generally breadth-first fashion.  Given a target concept that the system would like to

explain, PI searches outward from that concept through the links of its semantic
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network.  Activation spreads through the network until it finds a useful source: the

closer the source, the greater the similarity.  In an example given in (Thagard 1988),

PI might propose a wave theory of sound by tracing associations in a semantic

network:

sound -> music -> stringed instrument -> vibration -> up and down motion -> wave

Protos (Bareiss 1989) and GREBE (Branting 1989) employ a similar approach in

using an explicit theory to construct an explanation of why domain items are

similar.

Many instantiations of the spreading activation model of analogy suffer from an

excessive reliance on deterministic search through fixed networks of associations.

The Copycat program (Mitchell 1993) addresses these problems by allowing the

strength of the activation of nodes in the network to vary in response to aspects of

the current problem solving context, and stochastic influences on the strength of

these factors that render the spread of activation fundamentally non-deterministic.

In doing so, she has captured many features of human analogies in a computer

program.

PARADYME (Kolodner 1988b;  Kolodner 1989) manages case retrieval for the JULIA

meal-planning system.  PARADYME uses a number of different similarity heuristics

designed to measure various pragmatic criteria.  These are:

1. A preference for source cases whose conclusions match the goal of a

target problem.  This is a measure of the relevance of the source to the

target (see section 2.1.3).

2. A preference for highly salient features.  PARADYME computes salience

based on the history of a feature's effectiveness in selecting useful

sources.

3. A preference for sources that closely match the target.  One aspect of this

is the number of matching features.

4. Frequency constraints that prefer cases that have been used often in

problem solving.
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5. Recency measures, a preference those that have been used recently.

6. Ease of adaptation measures.

PARADYME (Kolodner 1988b) is also interesting in its use of systematic patterns in

source retrieval.  PARADYME searches for sources in a hierarchical organization of

concepts.  Retrieval begins by matching the target with the most general index, and

working down the tree to find an appropriate case.  It further constrains search

through a form of systematicity, preferring analogies that maintain the structure of

the source.  PARADYME cases are sequences of events; events can be specialized.  If

there are events g1 and g2, such that g1 precedes g2 in some sequence of events, and

these have specializations s1 and s2 respectively, then activation spreads from g1 to s1

only if  s1 precedes s2.  Activation spreads to specializations only if the specialization

does not omit part of a case's sequential structure (figure 9).  This is particularly

interesting in that it combines systematicity constraints with hierarchical

organization.
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Figure 9

Discussion: Similarity and learning

Similarity depends upon contextual and systematic information about targets and

sources.  Rather than using simple numeric similarity metrics, more powerful

methods use a domain theory to infer explanations of why a target and source are

similar.  In order to be effective, such approaches cannot rely upon a priori

distinctions between deep and surface knowledge, but must be able to draw upon

any known or inferred properties of the target and source.

However, efficient source retrieval must place some constraints on the

properties that are considered in source selection.  A reasonable approach to this
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problem would use empirical learning to favor those properties that have proven

useful in selecting sources in solving past problems.  This is that approach taken by

the SCAVENGER algorithm.  Rather than relying on a fixed retrieval vocabulary, it

uses inductive learning to infer a retrieval vocabulary from successes and failures in

problem solving.  The next section discusses the problems of organizing such a

vocabulary into an effective retrieval mechanism.

2.2.4 Memory organization

Given a suitable similarity metric, designers of analogical reasoners must still

address the problem of memory organization.  Even easily computed similarity

metrics cannot support an exhaustive search of large numbers of candidate sources.

Index structures organize memory into classes of similar sources, as defined by their

common features.  Schank (1982) calls these patterns remindings , where a

reminding is some aspect of a memory that is easily triggered by new situations.

A typical memory organization accesses sources through a hierarchical

discrimination network (see figure 2 in chapter 1).  Each node of the index contains a

pattern; child nodes specialize the pattern of their parent by adding constraints.  Each

index node represents common properties of a class of similar target and source

cases.  Sources are stored under the most specific index whose pattern they match;

retrieval finds the most specific indices that match the target, and retrieves the

associated sources.

One of the earliest examples of hierarchical memory organization was EPAM

(Feigenbaum 1961).  EPAM was designed as a model of the way in which humans

store and recall nonsense syllables, such as "pib" or "mur."  EPAM stored syllables in

a hierarchical discrimination network; each node of the network defined a common

feature of a set of syllables: a letter appearing in a certain position.  Given a new

stimulus, EPAM determines if it has already seen it or a similar syllable by searching

this network.

UNIMEM (Lebowitz 1980;  Lebowitz 1986) further refines the management of

hierarchical discrimination networks.  Concepts are sets of features; each node of the

network specializes its parent by specifying values for one or more features.  Unlike
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EPAM, a node does not add just one discriminating feature to its parent:  each step in

descending the hierarchy may add several features to the parent description.  This

improves efficiency slightly, although a more important effect is its ability to define

interesting generalizations at each node.  Each source is indexed by the most specific

node that it matches.  Retrieval of a concept involves descending this network to

find the most specific nodes with a satisfactory match to the new object.  Matching

does not require that the new object match the node on all features; UNIMEM accepts

partial matches.

UNIMEM places new sources in memory by finding the most specific node they

match.  It then examines the unexplained features of the source: these are features

whose values failed to match the index node or any parent of the index.  If enough

instances stored under the node have unexplained feature values in common with

the new source, UNIMEM creates a new specialization based on those features and

indexes these sources accordingly.   UNIMEM constructs taxonomies incrementally,

modifying its category structure as it encounters new training instances.

Because of the close relationship between analogy and categorization, research in

concept learning, the induction of general definitions of classes of similar instances,

has much to offer a theory of memory management for analogical reasoning.

Supervised induction begins with a set of instances that have already been classified

by a teacher.  Here, the learner's task is to infer general concepts that will correctly

classify training instances and have a high probability of correctly classifying future

instances.  Unsupervised approaches  construct useful categories for a set of

unclassified instances, relying on the learner's own heuristics or experience to select

quality categories.

ID3 (Quinlan 1986) is a supervised induction method that has greatly influenced

the retrieval mechanism of this research.  ID3 constructs a decision tree that will

correctly classify a set of training instances.  It attempts to build the smallest tree that

correctly classifies the training instances, under the assumption that such a tree will

make the fewest unsupported assumptions about the data and will be most likely to

categorize future instances correctly.  In constructing this tree, ID3 uses an

information-theoretic analysis of training instances to select the properties that

convey the most information about category membership.  The memory adaptation
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algorithm of chapter 3 adapts ID3's information-theoretic approach to the

construction of index hierarchies; I will discuss this technique and its

implementation in more detail at that time.

In general, memory management techniques use unsupervised approaches.

Clustering is the construction of taxonomies from unclassified training data.

Traditional clustering methods use numeric similarity metrics and build

taxonomies that minimize the distance between instances in a class (Everitt 1981).

Other approaches to clustering include Bayesian induction (Anderson and Matessa

1991;  Cheesman 1990), connectionism (Hinton 1990;  Rumelhart et al 1986), and

genetic algorithms (Holland 1986;  Holland and others 1986).

COBWEB (Fisher 1987) is one of the most sophisticated clustering algorithms,

using a global measure of category utility to select among potential modifications of

a taxonomy.  COBWEB is interesting for its probabilistic representation of categories:

it does not represent a category as a collection of features, but as a collection of

probabilities that an object in the category has certain properties.  It is an incremental

clustering algorithm; it inserts new instances into its hierarchy by trying different

modifications to the hierarchy, using category utility (Gluck and Corter 1985) to

evaluate these alternatives.  Category utility measures the extent to which the

taxonomy maximizes the probability that two objects in the same class share a

property, and minimizes the probability that objects in different categories share

properties.  It is interesting to note that COBWEB uses a global measurement of

taxonomic quality instead of the local metrics used in UNIMEM.  Thompson and

Langley (1991) have extended the COBWEB approach to include structured

representations.

In contrast to numeric approaches, conceptual clustering (Michalski and Stepp

1983) emphasizes qualitative measures of similarity and the construction of

intensional definitions of categories.  Conceptual clustering must address two

problems (Fisher and Langley 1985):

1. The construction of useful clusters of instances.
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2. The construction of a suitable general characterization of these

categories.

CLUSTER/2 (Michalski and Stepp 1983) is one of the first conceptual clustering

algorithms; it is also interesting for its integration of the clustering and

characterization aspects of the problem.  CLUSTER/2 constructs categories iteratively,

attempting to create categories that optimize properties of their descriptions.  One

such optimization prefers categories that lend themselves to short conjunctive

descriptions.  This notion of using qualitative properties of category descriptions to

construct and represent taxonomies is similar to many of the heuristics used in the

program of chapter 3 to select among potential analogies.

Discussion: Memory management as clustering

In general, clustering approaches to memory management adapt source memory

when saving new sources.  Incorporation of a new source into memory usually

proceeds by placing it under the most specific index that matches it, and proposing

local improvements to the hierarchy.  Options are either to store the source under

an existing index, create a specialization of an existing index to accommodate the

source and any other, similar stored instances, or merge the current node with a

parent or sibling and place the source in the result.  UNIMEM and COBWEB both

exemplify this source-centered approach to memory management: Their goal is an

effective partition of the set of analogical sources.  This approach is limited in that:

1. Although it may achieve an easily searched partitioning of source

memory, there is no guarantee that this will be effective in de-

termining the relevance of sources to specific target problems.  Such

indices improve the speed of searching the source base, but their ability

to predict the relevance of sources depends primarily on the quality of

the retrieval vocabulary.

2. All such algorithms construct index patterns by selecting properties

from a pre-determined retrieval vocabulary.  It is not clear how they

can be adapted to construct indices if these properties cannot be
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assumed to be known for all targets and sources.  This is particularly

true if the space of candidate properties is unbounded.

3. The ability of a property to select a relevant source cannot be determined

by examining sources alone.  The relevance of an analogy must be

found in the relationship between the target and the source.  Relevance

must be learned by examining and evaluating sources in the context of

actual targets.

Machine learning techniques offer a solution to these problems, allowing the

reasoner to infer generalizations that may then be used to predict what sources

might be relevant to future target problems.  For example, Barletta and Mark (1988)

have developed a technique called Explanation-Based Indexing (EBI) for using a

domain theory to learn predictive indices.  They have demonstrated this idea on the

fault recovery problem: given a failure of a piece of automated machinery,

determine the actions needed to recover from the fault.  EBI stores new source cases,

which are provided by a human trainer.  Given a set of observations made on the

system at failure and the human's solution, EBI uses a domain theory to explain

how the steps of a plan relate to each observation.  If the theory can demonstrate

that some action in the plan modifies an observation, it infers that the observation

is important and saves it for use in retrieving the case.  Note that the ability of the

system to distinguish relevant features from irrelevant side-effects depends entirely

on the domain theory.

By saving general patterns of analogy, a learner can become more efficient in

detecting and developing future analogies.  This can lead to an improvement in its

ability to solve new problems as well as those directly contributing to the abstraction.

It may also lead to an improved ability to develop future abstractions.  Gregory

Bateson (1972) calls the ability to "learn to learn" deutero-learning noting that

humans improve their rate of learning across a series of similar tasks.  The

relationship between analogies and abstractions may provide a means of achieving

deutero-learning in a computer program.
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2.2.5 Summary and conclusions

There are several issues that the design of source selection algorithms must address:

1. It must support efficient retrieval.  Most approaches, including the

model proposed in this dissertation, do this through a hierarchical

indexing system.

2. Indices must be effective in predicting the usefulness of sources.  In

contrast to approaches that rely upon fixed retrieval vocabularies, more

robust memory organization systems must learn through experience.

3. It is important that memory organization strategies avoid excessive

proliferation of indices or the maintenance of categories that do not

help solve target problems.

4. Retrieval patterns must be adequately expressive.  An indexing system

must be able to use deep, structural knowledge, as well as simple

features, in describing classes of stored instances.

The retrieval mechanism described in the next chapter addresses these issues.

Sections 2.1 and 2.2 have discussed analogical inference and source retrieval in

depth, describing and criticizing current approaches.  Although these discussions

have covered considerable ground, my approach to the literature has been

fundamentally influenced by the interaction theory of metaphor.  The next section

describes the interaction theory in more depth, and makes explicit many of its

influences on my interpretation of the current literature and the design of the

SCAVENGER analogical reasoning system.

2.3 An interactionist critique of computational approaches to analogical reasoning

This chapter has outlined a variety of approaches to source retrieval and analogical

inference.  It has also articulated a number of criticisms to these approaches.  The

interaction theory of metaphor provides a unifying framework for interpreting this

work and focusing these criticisms.
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2.3.1 The interaction theory of metaphor

Black (1962) characterizes three different views of metaphor:

1. The substitution view holds that metaphors can be replaced by

equivalent literal expressions.  Under this view, the metaphor "Man is

a wolf" is simply another way of making the literal statement: "Man is

dangerous and predatory."  The main flaw with this view is its failure

to assign any real semantic significance to metaphor: If metaphors are

only a round-about way of saying something that could just as well be

said literally, why should we bother with them?

2. The comparison view is a variation of the substitution view that treats

metaphor as a condensed form of an explicit comparison, such as a

simile.  The comparison view would interpret the metaphor "Man is a

wolf" as meaning "Man is l ike  a wolf (in being dangerous)": this

emphasizes the role of the comparison in conveying the intended

meaning.  Although it treats metaphor as equivalent to its literal

counterpart, the comparison view gives it a necessary function as a

vehicle to transmit this meaning.  While this justifies metaphor, it still

does not distinguish it from its literal re-statement.  Black also objects

to the comparison view on the grounds that it "suffers from a

vagueness that borders on vacuity."6

3. The interaction view of metaphor is an effort to remedy the limitations

of these theories.  It  defines an essential role for metaphor in language

and thought, and lays a foundation for understanding its means of

operation.

Black (1962) describes the interaction view of metaphor as consisting of "seven

claims":

6 This objection cannot be leveled against computational instantiations of the comparison view.
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(1) A metaphorical statement has two distinct subjects - a "principle" subject and a

"subsidiary" one.7

(2) These subjects are often best regarded as "systems of things" rather than "things."

(3) The metaphor works by applying to the principle subject a system of associated
implications characteristic of the subsidiary subject.

(4) These implications usually consist of "commonplaces" about the subsidiary subject,
but may, in suitable cases, consist of deviant implications established ad hoc by the
writer.

(5) The metaphor selects, emphasizes, suppresses and organizes features of the principle
subject by implying statements about it that normally apply to the subsidiary subject.

(6) This involves shifts in meaning of words belonging to the same family or system as
the metaphorical expression; and some of these shifts, though not all, may be
metaphorical transfers. . . .

(7) There is, in general, no simple "ground" for the necessary shifts of meaning - no
blanket reason why some metaphors work and others fail.

In a frequently cited metaphor of his own, Black compares the effect of metaphor

to a view of the night sky "through a piece of heavily smoked glass on which certain

lines have been left clear."  This glass, which corresponds to the analogical source,

makes visible those stars that appear in the clear lines; it also imposes a structure of

relationships (the lines in the glass) upon the sky.  This structure is the system of

relations, or "commonplaces" that are transferred from the source to the target:

We can say that the principle subject [the target] is "seen through" the metaphorical
expression - or, if we prefer, that the principal subject is "projected upon" the field of the
subsidiary subject [the source]. (page 41)

Under this view, metaphors cannot be replaced by their literal equivalent: they

are a unique form of inference.  To quote further:

Their mode of operation requires the reader to use a system of implications . . . as a
means for selecting, emphasizing, and organizing relations in a different field [my
emphasis]. (page 46)

7 In the terminology of this dissertation, the principle subject is the target, and the subsidiary subject is
the source.
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It is this act of transferring a system of  relations into a "different field" that gives

metaphor and analogy its unique power.  The essential feature of metaphors and

analogies is in their ability to transfer knowledge across semantic contexts.  This

results in unpredictable changes in the interpretation of the transferred knowledge:

an "equivalent" literal statement would loose the semantic information that arises

out of the interaction between the two subjects.  In a statement that echoes section

2.2.2's criticisms of numeric similarity measures, Black argues that any literal

paraphrase will fail to capture the subtler notions of relevance found in the

metaphor:

For one thing, the implications, previously left for a suitable reader to educe for
himself, with a nice feeling for their relative priorities and degrees of importance, are
now presented explicitly as though having equal weight.  The literal paraphrase
inevitably says too much - and with the wrong emphasis. (page 46)

The notions of similarity underlying metaphor are too complex and context

sensitive to be expressed in any simple, literal fashion.

Perhaps the most intriguing aspect of the interaction model is its recognition that

metaphors transfer knowledge in both directions.  Although transfer primarily

affects the target, it can result in changes in the source as well:

If to call a man a wolf is to put him in a special light, we must not forget that the
metaphor makes the wolf seem more human than he otherwise would. (page 44)

Black's analysis of metaphor is not unknown to the analogical reasoning

community.  Indeed, it has exerted a profound influence on the development of the

field.  However, as we should also expect, much remains to be done in translating it

into computational form.  Putting it in terms appropriate to this discussion, the

interaction of the philosophical and computational approaches to metaphor and

analogy has produced challenges, insights and shades of meaning not present in

either domain.

2.3.2 Interactionism and computational models of analogy

Research in analogical reasoning has produced computational counterparts to all

three of Black's theories of metaphor.  As is often the case, with computational

renderings of philosophical or cognitive theories, these implementations reveal
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previously unrecognized subtleties in their less formal counterparts, and a greater

understanding of their underlying structure.

A number of analogical reasoners seemingly reflect the substitution approach in

using analogies to transfer knowledge that could have been also inferred directly

("literally").  For example, derivational analogy (Carbonell 1986;  Carbonell and

Veloso 1988) uses analogies with old solutions to speed up problem solving.  The

problem-solving operators are known to the system; it could produce equivalent

solutions without recourse to analogy.  The analogy is equivalent to the "literal"

solution; it only serves to guide search and improve efficiency.  This should not,

however, mask the significance of the heuristic knowledge that is so transferred.

Derivational analogy and similar systems transfer knowledge of how to  solve target

problems; this procedural knowledge is not available outside of the context of the

analogy.  Indeed, the behavior of these problem solvers is best understood in terms

of the interaction of target and source problems.

Many case-based reasoning systems could be (superficially) classified as taking a

comparison approach.  As with the substitution view, transfer does not change the

meaning of source operators: the target solution could be interpreted as a "literal"

rendering of the initial problem.  Unlike substitution-oriented counterparts, CBR

frequently represents all problem-solving knowledge as source cases; there are no

general rules or operators that could be used directly in solving targets.  This

approach also leads to complexities more reminiscent of the interaction model:  The

representation of source cases must support generalization and adaptation beyond

the original source problem.  Memory-organization strategies strive for predictive

indexing of source cases; implicitly, at least, these strategies must take the structure

of the target domain into account.

The interaction view is most evident in analogical reasoners that infer new

declarative knowledge of the target problem.  Structure-mapping theory (section

2.1.2) incorporates a great deal of the interaction view, particularly in its emphasis

on systematicity.  The application of structure mapping to empirical discovery em-

phasizes analogy's ability to infer systematic aspects of target structure (Falkenhainer

1990b;  Falkenhainer and Michalski 1990).  Transformational approaches (section

2.1.5) recognize the importance of modifying source knowledge in adapting it to a
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new semantic context.  These case-adaptation operators serve the function of

bridging the gap between semantic contexts.  The relationship between analogy and

categorization discussed in section 2.1.4 is strongly interactionist in flavor: analogies

underlie categories, and categories constrain analogies.  Way (1991) makes explicit

reference to the interaction view in justifying her use of type hierarchies to model

metaphor understanding.

Computational research has also made contributions to the interaction view

itself.  For example, the pragmatic criticism of structure mapping addresses a

problem implicit in Black's theory.  Interactionism holds that metaphors transfer

"commonplaces" about the source to the target, but it is unclear about the source of

these commonplaces and how they can be distinguished from "less common" forms

of knowledge.  Pragmatic approaches (section 2.1.3) argue that problem solving goals

provide a context that defines relevant knowledge.

The criticism of static retrieval vocabularies in section 2.2.1 is a direct result of

the interaction view: How can we select a retrieval vocabulary without considering

its intended application to solving target problems?  Frequently, such vocabularies

hide assumptions about target problems in implicit linguistic biases; a complete

theory of analogy should make these biases explicit.  Similarly, the criticisms of

numeric measures of similarity in section 2.2.2 further reflect the interactionist

approach.

Although interactionism has already exerted a profound influence on theories of

metaphor and analogy, it is an extremely rich theory and much work remains to be

done in exploring its ramifications for computational models of analogical

reasoning.  This is particularly true in the area of source retrieval.

2.3.3 The interactionist critique revisited

Chapter 1 used the interaction view to articulate three specific criticisms of current

models of source retrieval.  These criticisms are further supported by the research

discussed in this chapter.  These are:

1. The separation of retrieval and inference.
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2. Monotonic measures of similarity.

3. Memory organization as clustering.

To elaborate:

The separation of retrieval and inference

Most models of analogical reasoning separate source retrieval and analogical

inference.  The interaction view undermines this approach by holding that while

source retrieval depends upon target-source similarity, it is often the metaphor (or

analogy) itself that creates similarity.  This implies that some form of analogical

inference underlies all notions of similarity.  The relationship between

categorization and analogy (section 2.1.4) underscores this observation.  The

pragmatic critique of structure mapping in section 2.1.3 argues for the use of target

goals in determining the relevance of sources; this implies that inferences about the

target may play a role in retrieval.

A number of systems have proposed unified approaches to retrieval and

inference.  MEDIATOR (Kolodner and others 1985) uses generalized cases to both

index sources and constrain inference.  HYPO (Ashley 1988;  Ashley and Rissland

1988a;  Ashley and Rissland 1988b) integrates retrieval and inference in a process of

reasoning about the relevance of legal cases.  PI (Thagard 1988), PARADYME (Kolodner

1988b) and Copycat (Mitchell 1993) use spreading activation through a network of

sources to search simultaneously for relevant sources and infer an explanation that

accounts for that similarity.

The retrieval mechanism of chapter 3 offers another perspective on this

interaction, interleaving retrieval, transfer and the evaluation of partial analogies in

a stepwise fashion.  A novel feature of this approach is its evaluation of partial

analogies to guide inference and retrieval.

Monotonic measures of similarity

The validity of monotonic, often numeric, measures of similarity is a direct casualty

of the interaction view: one of the primary justifications Black gives for the
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interaction view is its unique ability to convey "relative priorities and degrees of

importance" (Black 1962).  Interactionism's reliance on systems of relations, and its

support for meaning shifts across contexts implies that simple, quantitative

measures can only approximate similarity.

This is perhaps the most widely recognized and explored of the three criticisms,

with a number of systems accounting for goals and context in reasoning about

similarity.  MEDIATOR (Kolodner and others 1985), HYPO (Ashley 1988;  Ashley and

Rissland 1988a;  Ashley and Rissland 1988b), PI (Thagard 1988) and PARADYME

(Kolodner 1988b) are all examples of this approach.  Protos (Bareiss 1989) and GREBE

(Branting 1989) also construct qualitative explanations of why objects are similar.

Explanation-based indexing (Barletta and Mark 1988) extends this idea further, using

a domain theory to construct a qualitative explanation of a specific target-source

similarity, and saving a generalized form of the explanation as an index to source

cases.

The approach taken in this dissertation measures similarity in context by

tentatively transferring source properties to the target, and evaluating their impact

on the target problem.

Memory organization as clustering

The final, and perhaps the most significant of my criticisms focuses on the use of

clustering to organize source memory.  On the surface, such approaches construct

reasonable taxonomies of sources.  Their central flaw is the construction of

taxonomies by examining source properties in isolation from target problems, even

though it is precisely these problems that determine the relevance and predictive

value of those properties.  In order to be successful, such approaches must rely on

programmer-defined biases in the definition of a retrieval vocabulary.

Explanation-based indexing (Barletta and Mark 1988) is a notable exception,

constructing indices out of explanations of the similarity of targets and sources, as is

MEDIATOR (Kolodner and others 1985), which adjusts its generalized episodes in

response to experience in solving target problems.
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2.4 Conclusion

The interaction view of metaphor is an extremely rich source of ideas about the

nature of metaphor and analogy.  Many of these ideas have been included in

computational models of analogy, while many more of the theory's implications

remain to be explored.  The next chapter proposes a model of retrieval and inference

that further investigates the ramifications of the interaction theory for source

retrieval in analogical reasoning.
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3

An Interactionist Model of Source Selection

                                                                                                                                                                        

I'm afraid that God has no master plan.  He only takes what he can use.

David Byrne
The Facts of Life

SCAVENGER is an analogical reasoning program that formalizes the conjectures

made in the previous chapter.  SCAVENGER uses analogies with existing knowledge

to interpret empirical observations; this is a variation of the case-based

interpretation problem (Kolodner 1993). I have chosen this problem for its intrinsic

theoretical interest, its ability to test the ideas proposed in this work, and its rele-

vance to a variety of applications.  These applications include the interpretation of

tutorial examples of LISP method behavior (chapter 4), the diagnosis of bugs in failed

procedures (chapter 5), and the analysis of simulations in qualitative physics

(chapter 6).

Interpreting observations requires the classification of objects and events, and the

inference of relationships between them.  The proper categorization of empirical

data is an essential prerequisite for both scientific and common-sense reasoning:

Physics forms theories about the class of moving bodies, not about specific rocks.

We describe the physiology of species of animals, not individuals.  Psychiatry places

individual patients in general diagnostic categories.  These theoretical categories are

sufficiently abstract that they must be inferred from "raw" observations.  In addition

to categorizing the objects of an observation, interpretation must determine the

basic interactions between objects and events.  Many essential relationships, such as

causality or similarity, are not apparent in an observation, but must be inferred from

a combination of background knowledge and observational data.

Many reasoning systems oversimplify the interpretation process, requiring that

objects be explicitly categorized through such statements as moving-body(small-brown-

stone) or bird(tweety).  Others rely upon rules to infer categories from properties of
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objects themselves: ∀X has(feathers, X) ∧ lays-eggs(X) → bird(X).  More sophisticated

techniques use fuzzy logic or Baysian techniques to manage noisy or ambiguous

information.  However, all of these approaches assume that the meaning of an

object can be inferred from properties of the thing itself.  In doing so, they ignore

many essential contextual influences.  Depending on the context of its use, a rock

may be a hammer, a weapon, an ornament, or a fossil record of an extinct animal.  A

single phrase or gesture can express praise, contempt or humor in different si-

tuations.  The interpretation of an observation depends upon both the properties of

its components and the patterns of their interaction with other things.

Metaphors and analogies are powerful mechanisms for applying context to

interpretation.  This follows from the interaction theory's contention that

metaphors shape meaning by transferring systems of relations between sources and

targets.  These systems of relations are an effective expression of context.  For these

reasons, the problem of interpreting observations through analogy provides an ideal

test of the interactionist approach to source selection described in this dissertation.  I

have designed and implemented SCAVENGER as a vehicle for performing these tests.

This chapter begins with a description of the interpretation problem and its

representation.  Section 3.1 outlines the interpretation problem and introduces the

basic representations used in this work.  Section 3.2 discusses the merits of this

problem.  Section 3.3 provides a high-level overview of SCAVENGER's architecture,

and section 3.4 discusses each of its primary modules in detail.

3.1 The analogical interpretation problem

I have framed the interpretation problem as follows:

Given:

1. An unexplained observation.  An observation is a sequence of events;

these can change objects, although the effect of the changes may not be

apparent.  Observations do not make causal relationships explicit, but

they have a sequential structure that can suggest causality.
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2. Knowledge about objects and events in a variety of domains.  These are

candidate sources for explaining observations.

Goals:

1. Select objects and events from an appropriate source domain, and

construct an analogy between them and the target observation.

2. Transfer necessary information from the source to the target in order to

categorize target items and construct a causal explanation of the

observation.

3. Confirm the validity of the interpretation, either through experiments,

simulations or inference. Assume that this process is costly, and should

be done as little as possible.

4. Based on the successful analogy, acquire knowledge that will improve

future problem solving performance.

This formulation captures much of the essential structure of interpretation in

realistic domains.

3.1.1 Representing observations and theories using the Common LISP Object System

In choosing a representation for observations and analogical sources, I was guided by

the following goals:

1. To use a language that was general and expressive enough to support

diverse applications.

2. To enable the program to evaluate its hypotheses empirically, instead of

relying on a human user to evaluate its interpretations.

3. To emphasize the role of context in interpreting observations.  This

meant that the ability to describe a rich set of causal relationships was

essential.
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4. To reduce the likelihood that the behavior of the algorithm might be

overly influenced by unintended representational biases.

These criteria lead to my choice of the Common LISP Object System (CLOS) as a

representation language.  SCAVENGER's sources are represented as a library of CLOS

class and method definitions.  Observations are sequences of function evaluations

such as would be produced by the LISP interpreter.  Some of the functions in these

transcripts may be unknown; these are targets for the analogical reasoner.

Interpretation attempts to find a mapping between them and appropriate sources

such that the sources will re-produce the behavior shown in the transcript.  This

mapping is SCAVENGER's interpretation of the targets: it projects the semantics of

corresponding sources onto target problems.  An example will illustrate.

Define a transcript to be a series of LISP forms and the results that would be

produced by evaluating them using the LISP function: eval .  Each evaluation is

written as: (<evaluable-form> -> <result>).  Assume we give SCAVENGER the

following transcript to interpret:

(SETQ X (?TARGET-FUNCTION-1))  -> (INSTANCE  ?TARGET-CLASS  1)8

(SETQ Y (?TARGET-FUNCTION-1)) ->  (INSTANCE  ?TARGET-CLASS  2)
(?TARGET-FUNCTION-2 X 1) -> ? 9
(?TARGET-FUNCTION-2 Y 2) -> ?
(SETQ Z (?TARGET-FUNCTION-3 X Y )) -> ?
(?TARGET-FUNCTION-4 1 Z) -> T
(?TARGET-FUNCTION-4 2 Z) -> T

In this transcript, certain method names (?TARGET-FUNCTION-1, ?TARGET-FUNCTION-2,

?TARGET-FUNCTION-3 and ?TARGET-FUNCTION-4) and class names (?TARGET-CLASS) fail to

match any classes or methods known to the system.  Instead, the analogical reasoner

8 The expression, (INSTANCE  ?TARGET-CLASS  1) indicates an instance of the class

?TARGET-CLASS.   The number, 1, serves to identify different instances.  This is a

syntactically sweetened version of LISP 's instance labels, which use pointer values to

distinguish instances: #<TARGET-CLASS  #x2D9921>
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must find an analogical mapping between the targets and known classes and

methods that can account for the behavior observed in the transcript.

SCAVENGER maintains a library of source classes and methods, along with high-

level descriptions of their semantics.  For example, the class, BAG10 , is stored along

with a list of its methods and its LISP definition:

class-name: BAG
methods: (ADD, MEMBER, UNION, . . . )
lisp-definition: (DEFCLASS BAG . . . )

Similarly, SCAVENGER stores source methods with their LISP definition, speci-

fications of the types of their arguments and result11 , a list of the arguments the

method changes as side-effects, and a high level description of method semantics.

For example, the ADD method of the BAG class would be represented as:

method-name: ADD
argument-types: (T BAG) -> BAG
result: (ARG-1)
side-effects: ()
definition: ((ADD-TO-COLLECTION ARG-0 ARG-1))
lisp-definition: (DEFMETHOD ADD (ITEM (B BAG)) . . . )

This definition states that ADD takes two arguments, the first is an object of any type

(type = T); the second argument and the result are instances of BAG.  ADD returns its

second argument as a result, and has the behavior of adding its first argument to the

collection passed as its second argument.  It has no side-effects; i.e. it does not alter

any of its other arguments.

9 The "?" indicates an unknown or unspecified value.  I have allowed "wild card" results in

order to make the problem of interpreting transcripts harder, and the resulting system more

flexible in its application.
10 A BAG is an unordered collection allowing duplicate members.
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In interpreting the above transcript, assume that the source base includes such

classes as BAG, SET, QUEUE, STACK, etc., along with their methods.12   SCAVENGER will

search for a source class and methods that can successfully run the example.  One of

the analogies that SCAVENGER constructs is:

Class map.
TARGET-CLASS -----> BAG

Method map.
?TARGET-FUNCTION-4 -----> MEMBER

arg0 --> arg0; arg1 --> arg1
?TARGET-FUNCTION-3 -----> UNION

arg0 --> arg0; arg1 --> arg1
?TARGET-FUNCTION-2 -----> ADD

arg0 --> arg1; arg1 --> arg0 ; note argument reordering
?TARGET-FUNCTION-1 -----> MAKE-BAG

Note that the analogy between ?TARGET-FUNCTION-2 and ADD re-orders method ar-

guments; many analogical reasoners do not allow argument re-orderings, since

doing so adds greatly to problem complexity.

SCAVENGER confirmed this analogy by attempting to run the original transcript

using the source functions.  The result of this test is:

(SETQ X (MAKE-BAG)) -> #<BAG #x4A0E01>
(SETQ Y (MAKE-BAG)) -> #<BAG #x4A0E11>
(ADD-C 1 X) -> #<BAG #x4A0E01>
(ADD-C 2 Y) -> #<BAG #x4A0E11>
(SETQ Z (UNION X Y)) -> #<BAG #x4A0E39>
(MEMBER 1 Z) -> T
(MEMBER 2 Z) -> T

The analogy transfers the semantics of the source functions to the targets,

inferring the following interpretation for the target methods:

?TARGET-FUNCTION-1 takes arguments: NIL
         returns result: RESULT

11 This type specification is called the method's signature or prototype.
12 The source base  used to solve this problem not only included data structure classes, but

a wide variety of other CLOS classes and methods, including a rational number package,

time and date functions and a simple accounting package.  Appendix 1 describes it in detail.
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         Function has description: ((NEW-OBJECT RESULT))
?TARGET-FUNCTION-2 takes arguments: (ARG-0 ARG-1)
         returns result: ARG-1
         Function has description: ((ADD-TO-COLLECTION ARG-0 ARG-1))
?TARGET-FUNCTION-3 takes arguments: (ARG-0 ARG-1)
         returns result: RESULT
         Function has description: ((SUM ARG-0 ARG-1))
?TARGET-FUNCTION-4 takes arguments: (ARG-0 ARG-1)
         returns result: RESULT
         Function has description: ((IS-IN-COLLECTION ARG-0 ARG-1))

These descriptions state that ?TARGET-FUNCTION-1 (MAKE-BAG) returns a new object as its

result; ?TARGET-FUNCTION-2 (ADD) returns its second argument, with a new element

added to it; ?TARGET-FUNCTION-3 (UNION) returns the result of a summation of its

arguments; and ?TARGET-FUNCTION-4 (MEMBER) is a predicate testing whether its first

argument is in the collection specified in the second argument.  Using the

descriptions inferred through the analogy, SCAVENGER can construct a causal

explanation of the target transcript (figure 10).
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?TARGET-FUNCTION-1 ?TARGET-FUNCTION-1

INSTANCE OF TARGET-CLASS #1 INSTANCE OF TARGET-CLASS #2

?TARGET-FUNCTION-2 ?TARGET-FUNCTION-2

INSTANCE OF TARGET-CLASS #1 INSTANCE OF TARGET-CLASS #2

?TARGET-FUNCTION-3

INSTANCE OF TARGET-CLASS #3

?TARGET-FUNCTION-4 ?TARGET-FUNCTION-4

A graph of a target transcript

Figure 10

This graph, a variation of a data flow diagram, represents causal structure that is

not evident in the target transcript itself.  For instance, the graph makes it clear that

the order of the calls to ADD does not matter, so long as they precede the call to UNION.

Similarly, it captures the independence of the two evaluations of MEMBER.  It is
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interesting to note that the structure of this graph does not follow from either the

target transcript or the sources alone: it comes from the interaction of the two.

These explanations also play a role in SCAVENGER's retrieval mechanism: in order to

rank competing analogies prior to testing them, SCAVENGER will construct and

analyze these explanations.

After finding and evaluating an interpretation of the target, SCAVENGER searches

for features of the successful analogy that may be useful in solving future problems.

It incorporates these features into an index structure that will improve source

selection.

This problem captures many features of interpretation as it appears in realistic

domains such as scientific discovery:   Rather than allowing the system to rely on

names to indicate the classification of individual events (function evaluations) and

objects (arguments and results), these must be inferred from contextual and

behavioral clues found in the transcript.  Transcripts have a built-in sequentiality

suggests events occurring in time; this, combined with the ability of CLOS objects to

preserve state information allows them to represent causal interactions.  Although

there are causal interactions between statements in a transcript, these interactions

and their effects on objects may not be obvious.  Observations do not make the

interpretation of target objects and events explicit; SCAVENGER must infer them

using background knowledge and the information provided in the target transcript.

3.2 Why this is an interesting problem

I have chosen this problem, not only for its ability to challenge SCAVENGER's source

selection mechanisms, but also for its generality and intrinsic interest.   Interesting

aspects of the interpretation problem and its formulation include:

3.2.1 It requires the use of systematic patterns in constructing analogies

The interaction theory recognizes that much of the power of analogical inference

lies in its ability to transfer whole systems of relations between sources and targets.

However, many models of analogy take an implicitly reductionist view, assuming

that sources can be retrieved by matching on individual properties of objects, or that

source properties can be transferred to the target individually, on a one-at-a-time
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basis.  Many measures of similarity ignore the role of context in their assumption

that similarity increases monotonically with the number of properties two objects

share (section 2.2.2).

As the preceding example indicates, target transcripts provide little information

about individual  functions and objects: it would be nearly impossible to interpret an

isolated line of a transcript meaningfully13 .  Interpretations of target classes and

methods emerge from the patterns of their interaction.  Consequently, effective

source selection must attend to such higher level structural features of the target as

the numbers and types of target arguments, and the patterns of interaction between

target functions.

3.2.2 "Observations" often under-constrain interpretations

Frequently, observations under-constrain their interpretation, requiring that the

reasoner use past experience to resolve ambiguities.  In the domains I have used to

test SCAVENGER, target transcripts often support competing, empirically

indistinguishable interpretations.  For instance, the example of section 3.1.1 could be

interpreted as describing a SET as well as a BAG.  SCAVENGER's interpretation of the

target, while duplicating the behavior of the transcript, is not guaranteed to be

"correct" in any objective sense.  Since the transcript alone cannot discriminate

among possible interpretations, the analogical reasoner must do so heuristically.14

It is important to note that this uncertainty is inherent in the problem statement

itself; it is not a result of the inference procedures used for its solution.

3.2.3 It reflects the relationship between theories and the worlds they describe

Many AI programs fail to treat the relationship between the world and theories

about it realistically.  Often, they rely upon the closed world assumption (Luger and

Stubblefield 1993; Luger 1994) and treat theories as if they captured all relevant

knowledge of the world.  In realistic domains, including both scientific and

13 The tests discussed in section 4.4 corroborate this intuition.
14 In this example, it used the heuristic of preferring the most general interpretation, in this

case BAG.
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commonsense reasoning, theories are seldom complete.  In general, we must reason

about worlds that are much more complex than our theories about them could ever

hope to be.

As the previous example illustrates, SCAVENGER does not have a strong model of

LISP semantics.  The interpretation of source classes and methods is hidden in their

definitions and the behavior of the interpreter.  Target transcripts provide even less

information about target methods.  SCAVENGER's theories of its "world" do not

capture the full complexity of that world; instead, it must select analogical sources

using the high-level descriptions stored with its source methods and the limited

information provided by the transcripts themselves.  This mirrors the problems that

arise in many realistic interpretation problems, such as perception, diagnostics and

scientific discovery, where our theories are usually incomplete or approximate.

3.2.4 The problem representation eliminates many of the biases found in source retrieval

One of my goals in formulating this problem was to disallow, as much as possible,

the unspecified, often unrealistic biases and heuristics that frequently appear in

computer models of analogical reasoning.  For example, many models of source

selection exploit arbitrary restrictions on a retrieval vocabulary (see section 2.2.1),

assuming that key predicates from the retrieval vocabulary will always be known for

both the target and source, and will be represented in an easily manipulated form.

SCAVENGER's LISP transcripts do not conform to such ad hoc restrictions:   There

are no lists of target properties that can be matched against indices, no pre-

determined retrieval vocabulary that can be used to construct indices, and no a

priori restrictions on the knowledge that can be used in retrieval.  The only

restriction on the representation of targets is that they be reproducible by the LISP

interpreter given the correct definitions of the target classes and methods.

Similarly, in selecting sources, SCAVENGER uses the information about argument

types and the function descriptions stored with each source.  I have placed no

excessive restrictions on these descriptions, allowing the use of relations of any arity

to be used in describing source methods.
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3.2.5 Interpretation requires both background knowledge and empirical data

The interaction theory implies that metaphor and analogy are essential mechanisms

for interpreting empirical observations.  According to the interaction theory, the

interpretation of a concept may be characterized in terms of its relationships to other

concepts; metaphors and analogies interpret both targets and sources by transferring

such relationships between them.  This process involves the continuous interaction

of background knowledge in the form of analogical sources and new empirical data,

usually drawn from target problems.

The assumption-based retrieval mechanism described in this chapter takes a

unique approach to this interaction between background knowledge and ob-

servational data in constructing interpretations.  Because SCAVENGER's target

transcripts provide little information about unknown classes and methods,

conventional retrieval techniques do not work well on these problems.  SCAVENGER

selects sources by transferring aspects of source interpretation to targets and eval-

uating the implications of these assumptions.  If empirical evaluation confirms an

analogy, SCAVENGER assumes its interpretation is correct.

3.2.6 The interpretation of observations is an often neglected aspect of inductive learning

In realistic situations, empirical data seldom appears in an easily usable form; it

must interpreted and classified.  Many learning algorithms ignore this problem,

exploiting the single representation trick (Cohen and Feigenbaum 1982):

If the representations for the rule space [the space of generalizations to be learned] and
the instance space [the space of training data] are far removed from each other, then the
searches of the two spaces must be coordinated by complex interpretation and experiment
planning procedures.  One trick commonly used to avoid this problem is to choose the
same representation for both spaces (page 368)

This assumption may limit a system's applicability in many situations.  Cohen and

Feigenbaum further state:

In more practical situations, the interpretation and experiment-planning routines serve
to translate between the raw instances (as they are received from the environment) and
the derived instances (after they have been interpreted as specific points in the rule
space). (page 369)
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We can view SCAVENGER's solution to the interpretation problem as a technique for

bridging this gap in certain circumstances.  As such, it may play a role in developing

more complete models of empirical learning.

3.2.7 Interpretation can foster insights into the mechanisms of perception

As here formulated, the interpretation problem is a variation of the high-level

perception problem described in Mitchell's work on analogy (1993).  High-level

perception is concerned with the way in which intelligent agents construct systems

of relations linking perceived objects; it is not concerned with such low-level

perceptual processes as feature extraction.  Like the simple string analogies studied

in Mitchell's research (see section 2.1.5), SCAVENGER's transcripts provide the learner

with a set of objects, but do not reveal their underlying relationships.  These must be

inferred through processes of analogy involving what is given in the observation

and what the system already knows.  Mitchell has argued that high-level perception

is an important but seldom studied aspect of cognition that can legitimately be iso-

lated from lower-level perceptual processes.

In addition, she argues for the use of analogies as a mechanism for high-level

perception.  Although SCAVENGER takes a different approach to analogy, it shares

this underlying assumption.  The interpretation of LISP transcripts includes many

interesting properties of Copycat's string interpretation problem, particularly the

under-constraint of possible interpretations by target problems.  The results of the

SCAVENGER experiments may provide further insights into the role of analogies in

perception.

3.2.8 It is a vehicle for exploring the relationship between analogy, abstraction and learning

Section 2.1.6 discussed the relationship between analogy and abstraction.  Although

most analogical and case-based reasoners implicitly create and store abstract

descriptions of families of similar sources in their indexing systems, many such

systems rely excessively on representational biases in constructing those indices.

These algorithms emphasize the selection of effective predictors of source relevance

from a relatively small, pre-defined set of such properties, and build indices that

store these predictors.
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The formulation of the interpretation problem in this dissertation precludes any

such simple approach to memory organization.  LISP transcripts may consist of any

syntactically correct, evaluable LISP forms.  The descriptions used to construct indices

reflect the semantics of the source functions and include relations of any arity.

These descriptions reflect the meaning of the sources, and are not selected from

bounded, fixed retrieval vocabularies. SCAVENGER must work with these higher

level structural descriptions if it is to construct any sort of reasonable, abstract

description of successful analogies and use it to improve future inferences.

3.2.9 The interpretation problem underlies a range of potential applications

The generality of LISP and CLOS supports a variety of applications.  The example of

section 3.1 illustrates SCAVENGER's application to the problem of interpreting ex-

amples of LISP function behavior.  This problem grew out of an interest in the way

humans use examples to communicate more general ideas.  Understanding an

example requires deciding what is relevant, what is implied and using this

information to form an appropriate generalization.  For instance, if I were teaching a

class about the BAG data structure, I might illustrate the concept with an example

similar to that of the previous discussion.  How do students extract the appropriate

generalization from such an example?  Analogical reasoning is a promising

mechanism for this process.  In addition, certain aspects of this problem, such as the

assumption that the example is intended to inform rather than deceive, provide a

rich source of heuristics.  Although this problem may have applications in the

management of object-oriented software libraries15 , I chose it mainly for the

inherent interest, and the challenge provided by the diversity of sources that must

be managed in this application.  Chapter 4 describes SCAVENGER's application to this

problem.

Many other problems can be framed as forms of interpretation.  For example,

diagnosis and debugging could be viewed as the problem of finding an in-

terpretation (a diagnosis) of a set of observations (symptoms).  Assume that a system

of interacting components is exhibiting abnormal behavior.  We could describe the

15 Could a programmer select reusable software modules by giving a system examples of

their desired behavior?
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system's behavior as a LISP transcript in which objects are the components of the

system, and functions describe their behaviors and interactions.  The knowledge

base for the diagnosis would be a set of CLOS class and method definitions describing

both normal and failure behaviors of individual components.  Note that the

observed behavior of such systems emerges from complex interactions between

components: diagnosis must consider the overall pattern of the system's behavior.

SCAVENGER will find an analogical mapping between sources describing normal or

failure behaviors of components and the components specified in the transcript.  It

will test these mappings by running simulations to re-produce the observed faults; a

successful analogy leads to a diagnosis.  This "analogize and simulate" approach to

diagnosis differs from the more analytical approach taken by expert systems, and

adds another technique to the knowledge engineer's tool box.  Chapter 5 describes

SCAVENGER's application to the problem of diagnosing bugs in children's subtraction

skills.

Another area where I have applied SCAVENGER involves reasoning about

simulations.  Because it assembles and tests object oriented programs, SCAVENGER is

an ideal tool for simulation based problem solving.  A brief discussion of this

application may be found in chapter 6.

3.2.10 Interpretation is a complex problem

SCAVENGER's analogies allow targets and sources to match under any ordering of

their arguments.  The only constraints on this match are the requirement that both

target and source have the same number of arguments, and that the mapping does

not associate items of incompatible types.  This contrasts with many more

constrained forms of analogical inference (section 2.1.1) that artificially limit these

possibilities.  As a worst case approximation of the problem's complexity, assume

that all functions have k arguments.  If we assume n target functions and a source

base containing m source functions, there are a total of

mn k!

possible analogies that must be considered.
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3.3 An overview of the SCAVENGER architecture

This section provides a high level overview of SCAVENGER's architecture; sec-

Initialize target Search hierarchy

Rank partial analogies

Complete the best  
untried  partial analogy.

Rank resulting
complete analogies

Does next  candidate
analogy run transcript?

Recommend
analogy to user

Are there
untried partial analogies?

No
Failure

Are there
untested analogies?

Yes

No

Yes

No

Update hierarchy

The SCAVENGER algorithm

Figure 11

tion 3.4 discusses it in detail.  As illustrated in figure 11, SCAVENGER solves problems

through a cycle of generating and evaluating candidate analogies.  It begins by

searching a hierarchy for sources that match target items.  This produces a number

of candidate analogies; these are partial in that components of the target may be

unmapped.  It ranks these partial analogies, completing and evaluating them in

order.  The remainder of this section briefly describes each phase of the algorithm,

drawing on examples from the BAG analogy of the previous section.
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3.3.1 Representing analogies in SCAVENGER

SCAVENGER represents analogies as mappings between elements of a target and a

source.  Figure 12 shows the mapping between ?TARGET-FUNCTION-2 and the ADD method

in the example of section 3.1.  Note that the analogy allows function names to match

freely, and also reorders arguments.  The only constraints on analogical mapping are

the requirement that target and source have the same number of arguments, and

that the types of corresponding arguments be consistent.  SCAVENGER does not use

operators to change the structure of target problems.  By taking a relatively

unrestricted approach to analogical mappings, it does not require many of the ad hoc

limitations other models of analogy use to make the problem more tractable.

(?TARGET-FUNCTION-2   arg-0   arg-1)  

(ADD  arg-0  arg-1)

An analogical mapping

Figure 12

3.3.2 Initializing target problems

SCAVENGER begins by creating an internal representation of the target problem.

Initialization designates as targets those functions that SCAVENGER does not

recognize by name.  It assigns a default interpretation to each target function, and

makes initial inferences about the types of its arguments.
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(INDEX-METHOD-797  T  INDEX-CLASS-61) 
-> INDEX-CLASS-61

RESULT: ARG-1
SIDE-EFFECTS: ()
DEFINITION: ((ADD-TO-COLLECTION ARG-0 ARG-1))

(ADD  T  BAG)  -> BAG

RESULT: ARG-1
SIDE-EFFECTS: ()
DEFINITION: ((ADD-TO-COLLECTION ARG-0 ARG-1))

(PUSH  T  STACK)  -> STACK

RESULT: ARG-1
SIDE-EFFECTS: ()
DEFINITION: ((ADD-TO-COLLECTION ARG-0 ARG-1))

(ADD  T  SET)  -> SET

RESULT: ARG-1
SIDE-EFFECTS: ()
DEFINITION: ((ADD-TO-COLLECTION ARG-0 ARG-1))

INDICES: SOURCES:

ROOT

INDEX 1

A simple SCAVENGER index hierarchy

Figure 13

In addition, the initializer records dependencies between function arguments

and results in the target transcript.  For instance, in the example of section 3.1, the

initializer notes that ?TARGET-FUNCTION-2's second argument is the value returned by a

call to ?TARGET-FUNCTION-1.  Although neither type can be inferred from the transcript,

it will be possible to infer information about the type of ?TARGET-FUNCTION-2's second

argument when ?TARGET-FUNCTION-1 becomes mapped to a source.  The initializer

stores a record of such dependencies to simplify this inference.

3.3.3 Searching the index hierarchy

Each node of the index hierarchy describes a set of similar source methods.  Call

these descriptions method patterns.  A method pattern specifies the argument types

and high-level definition shared by a set of similar sources.  Figure 13 shows a very

simple index hierarchy.  Note that the sources stored under an index may differ in

details of their behavior.
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TARGET-FUNCTIONS:

(?TARGET-FUNCTION-1) -> ?TARGET-CLASS
RESULT: RESULT
SIDE-EFFECTS: ()  
DEFINITION: ((NEW-OBJECT RESULT))

(?TARGET-FUNCTION-4 INTEGER  NULL) -> SYMBOL
RESULT: RESULT
SIDE-EFFECTS: ()  
DEFINITION: ((NEW-OBJECT RESULT))

(?TARGET-FUNCTION-3  ?TARGET-CLASS ?TARGET-CLASS)  -> NULL
RESULT: RESULT
SIDE-EFFECTS: ()  
DEFINITION: ((NEW-OBJECT RESULT))

(?TARGET-FUNCTION-2  ?TARGET-CLASS  T) -> ?TARGET-CLASS
RESULT: ARG-0
SIDE-EFFECTS: ()
DEFINITION: ((ADD-TO-COLLECTION ARG-0 ARG-1))

(?TARGET-CLASS -> INDEX-CLASS-01,
?TARGET-FUNCTION-2  -> INDEX-METHOD-797 (ARG-0 -> ARG-1, ARG-1 -> AG-0))

TARGET-INDEX-MAP:

INDEX-NODE:  INDEX 1

A partial interpretation of the target problem

Figure 14

Retrieval explores the hierarchy in a standard tree search fashion.  Matches

between the target and the index are constrained by numbers of arguments and type

information.  On matching target functions with the method descriptions in an

index node, SCAVENGER transfers the index's function descriptions to the matching

targets.  Each index match will transfer different method descriptions to the target

problem.  In this fashion, every index node match produces a different

interpretation of the target problem; these interpretations are more abstract than

those afforded by specific analogies.  In order to distinguish these two levels of

interpretation, the remainder of this chapter will refer to high-level interpretations

as interpretations.  It will refer to the final definitions of targets that are produced by

an analogy with specific sources as analogies.  Under this nomenclature, a single

interpretation can be shared by many analogies.  This ability to manage multiple

levels of interpretation if a basis of much of SCAVENGER's power.
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Search of the index of figure 13 produces two interpretations: one results from a

match with the root, and does not change the default interpretation.  The other

results from the match with INDEX-1; figure 3.5 shows the interpretation that results

from this match.

In figure 3.5, ?TARGET-FUNCTION-2 matches INDEX-METHOD-797 (note that the match

specifies an argument re-ordering).  ?TARGET-CLASS matches INDEX-CLASS-01.  All

functions except ?TARGET-FUNCTION-2 retain their default interpretations: they change

none of their arguments, and return a new object as a result.

Information that was transferred from INDEX-CLASS-01 to ?TARGET-FUNCTION-2 includes:

1. Generalizing the type of its second argument from INTEGER (as suggested

by the transcript) to T16 .

2. Designating the type of the result of ?TARGET-FUNCTION-2 to be ?TARGET-

CLASS.  This follows from the observation that the type of the result

returned by INDEX-METHOD-797 is the same as the type of the first argument.

3. Specifying that ?TARGET-FUNCTION-2 adds its second argument to the

collection specified in its first argument.

3.3.4 Ranking matches

In general, search of the index hierarchy will produce several different matches and

resulting high-level interpretations of the target problem.  SCAVENGER uses two

types of heuristics to prioritize matches for further examination:

1. Favor interpretations that result from matches deep in the index

hierarchy.

2. Use domain specific heuristics to break any ties remaining after step 1.

In the problem of interpreting tutorial examples of LISP function

behavior, SCAVENGER uses the function descriptions found under each

interpretation to construct an explanation of the target (figure 3.1).  It

16 In the LISP type system, T is the most general type.
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then evaluates this explanation graph for such properties as

connectedness, branching, simplicity, etc.  Other domains use different

heuristics.

Two aspects of this ranking method are unique: The first is SCAVENGER' S ability

to reason with partial analogical mappings; it does this by assuming a default

interpretation for unmapped targets.  The second is its ability to rate whole families

of similar analogies by reasoning at the level of their common high-level inter-

pretation; this helps improve the efficiency of the retrieval algorithm.

?TARGET-CLASS -> BAG
?TARGET-FUNCTION-1 ->  ?
?TARGET-FUNCTION-2 -> ADD
?TARGET-FUNCTION-3 -> ?
?TARGET-FUNCTION-4 -> ?

?TARGET-CLASS -> SET
?TARGET-FUNCTION-1 ->  ?
?TARGET-FUNCTION-2 -> ADD
?TARGET-FUNCTION-3 -> ?
?TARGET-FUNCTION-4 -> ?

?TARGET-CLASS -> STACK
?TARGET-FUNCTION-1 ->  ?
?TARGET-FUNCTION-2 -> PUSH
?TARGET-FUNCTION-3 -> ?
?TARGET-FUNCTION-4 -> ?

A set of partial analogies

Figure 15

3.3.5 Completing analogies

SCAVENGER completes and evaluates index matches in the order established in 3.2.4.

Each index match produces a mapping between a subset of the target methods and

the method patterns stored in the index.  In turn, the index maintains a set of

mappings between its method patterns and all matching source methods and

classes.  The first step in completing the analogies afforded by a match is to compose
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these mappings.  This produces a set of partial analogies.  Figure 15 shows a few of

the partial analogies produced by the interpretation of figure 14.  I have omitted the

mappings between arguments in order to simplify the figure.

SCAVENGER finds all consistent completions to each of these partial analogies.

Although this sounds expensive, a match of a single target generally produces

enough information about argument types to constrain possible completions of the

analogy.  The first analogy of figure 15 binds ?TARGET-CLASS to BAG; since the

signatures of ?TARGET-FUNCTION-1 and ?TARGET-FUNCTION-3 include instances of ?TARGET-

CLASS as an argument, SCAVENGER is able to limit its efforts to methods of the source

class, BAG.  Each partial analogy may have multiple completions; SCAVENGER will

produce all of them.  Figure 16 shows the completions of a the first partial analogy of

figure 15.

?TARGET-CLASS -> BAG
?TARGET-FUNCTION-1 ->  ?
?TARGET-FUNCTION-2 -> ADD
?TARGET-FUNCTION-3 -> ?
?TARGET-FUNCTION-4 -> ?

?TARGET-CLASS -> BAG
?TARGET-FUNCTION-1 ->  MAKE-BAG
?TARGET-FUNCTION-2 -> ADD
?TARGET-FUNCTION-3 -> EQUAL
?TARGET-FUNCTION-4 -> MEMBER

?TARGET-CLASS -> BAG
?TARGET-FUNCTION-1 ->  MAKE-BAG
?TARGET-FUNCTION-2 -> ADD
?TARGET-FUNCTION-3 -> UNION
?TARGET-FUNCTION-4 -> MEMBER

Completing a partial analogy

Figure 16

Each complete analogy transfers information about its signature and definition

to each target method.  Note that a single (partial) interpretation produced under

step 3.2.2 can produce multiple interpretations at this stage.  It is possible for

different analogies to transfer different high-level descriptions to the same target

methods.  SCAVENGER groups those analogies together that have transferred

identical signatures and descriptions to the target methods; using the terminology of

3.2.3, these are grouped according to common high-level interpretations.

SCAVENGER sorts these interpretations using the heuristics described in 3.2.3.
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3.3.6 Ranking analogies

SCAVENGER examines the interpretations produced in 3.2.5 in the order of their

heuristic ranking.  For each interpretation, it further sorts the analogies collected

under it in decreasing order of promise.  The heuristics used to sort analogies within

a common high-level interpretation are different from those used to sort

interpretations themselves (see section 3.4.5).

3.3.7 Testing analogies

SCAVENGER tests candidate analogies by substituting source function names into the

target transcript, reordering function arguments as indicated in the analogical

mapping and evaluating the resulting LISP forms.  If this evaluation produces no

errors and the results match those specified in the target transcript, SCAVENGER

labels the analogy a success.

It is possible to tell SCAVENGER to either quit after finding the first successful

analogy or continue to find all analogies that run the target transcript.  If it quits

after the first success, SCAVENGER assumes that the remaining analogies are failures.

3.3.8 Updating the hierarchy

On finding an analogy that successfully runs the target transcript, SCAVENGER

updates the index node that produced the analogy.  In general, a single index match

will produce many different complete analogies; these may be grouped according to

common high-level interpretations of the target.  SCAVENGER considers each of

these interpretations, labeling an interpretation as positive  if it contains a successful

analogy, negative  otherwise. It then examines each target method that was not

involved in the original match with the index, considering each different

interpretation of that method as a candidate specialization of the original index.
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(INDEX-METHOD-797  T  INDEX-CLASS-61) 
-> INDEX-CLASS-61

RESULT:  ARG-1
SIDE-EFFECTS: ()
DEFINITION:((ADD-TO-COLLECTION ARG-0 ARG-1))

(INDEX-METHOD 817  T  INDEX-CLASS-61)
                                   ->  T

RESULT: RESULT
SIDE-EFFECTS: ()
DEFINITION: ((IS-IN-COLLECTION ARG-0 ARG-1))

SOURCES

SOURCES

ROOT

INDEX 1

INDEX 2

An updated index hierarchy

Figure 17

SCAVENGER chooses the method description that best distinguishes the different

analogical interpretations using a variation of the ID3 learning algorithm's

information-theoretic evaluation function (Quinlan 1986).  Section 3.4.6 discusses

this in detail.  It then creates a specialization of the parent index based on this

method description, and stores all matching sources under it.  Figure 17 shows the

specialization produced by adding the inferred description of ?TARGET-FUNCTION-4

(MEMBER) to the hierarchy.  Note that index nodes build on the matches with their

parents; i.e., any match with INDEX 2 in figure 17 will include and be consistent with

the mapping established in the match with INDEX 1.

3.3.9 Recommending analogies to the user

Recommendation displays the successful analogies to the user.
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3.3.10 Conclusion: Scavenger and the interactionist approach to source retrieval

SCAVENGER provides an instantiation of the interactionist model of source retrieval

introduced in section 1.3.  The significant aspects of this model, and their treatment

in the SCAVENGER algorithm are:

Assumption-based retrieval

The first feature of the interactionist model of retrieval is the interleaving of

retrieval and inference.  On matching an index node, SCAVENGER transfers the

associated method descriptions to the target, and evaluates the impact of these

descriptions on the target problem using domain specific heuristics.  It uses these

evaluations to select among candidate index matches.  This analogical inference is

tentative; SCAVENGER will consider a number of interpretations during source

selection, ultimately rejecting many of them.  It deals with this non-monotonicity by

maintaining multiple interpretations of the target problem.

The use of context to evaluate similarity.

The interaction theory of metaphor rejects simple, monotonic measures of

similarity.  Measures of similarity must account for contextual and goal based effects.

After transferring the method definitions stored under an index to the target

functions, SCAVENGER evaluates the impact of this information on the target

transcript.  One approach I have explored evaluates properties of graphs of the

target, such as appears in figure 3.1.  Two aspects of this approach are interesting:

SCAVENGER uses systematic properties of the explanation to rank interpretations;

secondly, these properties only have meaning in the context of the target problem.

Empirical memory management.

In contrast to source-oriented, clustering approaches, SCAVENGER adapts its index

hierarchy on the basis of its experience in solving target problems.  Essentially, it

uses the target problem to restrict the information that can be used to specialize the

hierarchy.  This represents a transfer of knowledge of relevance  from the target back

to the source.  This is the riskiest hypothesis considered in this research, since
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empirical memory management's ability to improve retrieval depends upon the

existence of recurring similarities across target problem instances.  If all target

problems are completely different, this technique could actually degrade the

program's performance.

The next section of this chapter discusses each of SCAVENGER's major

components in detail.  These discussions include descriptions of the algorithms,

justifications for their design, and questions they raise for evaluating the algorithm.

Part of that explanation is a detailed trace of SCAVENGER's treatment of a single

example problem.

3.4 An extended example

Like the example of section 3.2, the next example problem concerns the inter-

pretation of examples of LISP function behavior.  The library used in this example

contains a number of classes and methods, including data structure classes, a

rational number package, time and date classes and a simple accounting package.  It

is described in Appendix 1.

This section presents the details of SCAVENGER's performance by tracing its

solution to the transcript:

(setq x (?target-function-1)) -> ?
(?target-function-2 'a x) -> ?
(?target-function-2 'b x) -> ?
(?target-function-3 x) -> b
(?target-function-3 x) -> a

Note that the use of wild-cards ("?") in the target statement makes this a particularly

difficult problem instance, since they prevent SCAVENGER from initially inferring

the types of the results to ?TARGET-FUNCTION-1  and ?TARGET-FUNCTION-2.

Assume the index hierarchy of figure 18.  To simplify the diagram, I have

omitted the argument re-orderings in the index-source mappings.  This hierarchy

was produced by two runs of SCAVENGER: one of these problems was an example of
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the addition of rational numbers, the other involved inserting and counting

elements in a BAG data structure.

3.4.1 Representing and initializing sources and target problems

SCAVENGER stores source methods with their signatures, LISP definitions, side-effect

specifications, and a description of their semantics.  This description is
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ROOT

(INDEX-METHOD-92  T  INDEX-CLASS-01)
                              ->  INDEX-CLASS-01

RESULT: ARG-1
SIDE-EFFECTS: ()
DEFINITION: ((ADD-TO-COLLECTION ARG-0 ARG-1))

(INDEX-METHOD-83 INDEX-CLASS-31  INDEX-CLASS-31)
-> INDEX-CLASS-31

RESULT: RESULT
SIDE-EFFECTS: ()
DEFINITION: ((SUM ARG-0 ARG-1))

INDEX-CLASS-01 =  DEQUE
INDEX-METHOD-92 = ENQUEUE-FRONT

INDEX-CLASS-01 =  QUEUE
INDEX-METHOD-92 = ENQUEUE

INDEX-CLASS-01 =  SORTED-QUEUE
INDEX-METHOD-92 = INSERT

INDEX-CLASS-01 =  BAG
INDEX-METHOD-92 = ADD

INDEX-CLASS-01 =  SET
INDEX-METHOD-92 = ADD

INDEX-CLASS-01 =  STACK
INDEX-METHOD-92 = PUSH

INDEX-CLASS-31 = RATIONAL
INDEX-METHOD-83 =  +

INDEX-CLASS-31 = COMPLEX
INDEX-METHOD-83 =  +

INDEX-CLASS-31 = SET
INDEX-METHOD-83 =  UNION

INDEX-CLASS-31 = BAG
INDEX-METHOD-83 =  UNION

Index Hierarchy Sources

INDEX-NODE 1

INDEX-NODE 2

INDEX-CLASS-01 =  DEQUE
INDEX-METHOD-92 = ENQUEUE-REAR

INDEX-CLASS-31 = STRING
INDEX-METHOD-83 =  CONCATENATE

A simple SCAVENGER index hierarchy

Figure 18

not intended to be a detailed specification of the function, but a high-level

characterization of its behavior.  These descriptions should be general enough that
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several source methods will have a common description; indeed, much of

SCAVENGER' S power derives from the generality of these descriptions and their

ability to represent classes of similar source methods.

As an example, of the description language used in the example understanding

problem, consider the description of INDEX-METHOD-82 in INDEX-NODE-1 of figure 18.  The

result, ARG-1, indicates that the function modifies its second argument.  The side-

effects slot indicates changes that are made to arguments that do not appear in the

function's result: this method has no side effects.  The definition of the function

behavior, ((ADD-TO-COLLECTION ARG-0 ARG-1)), specifies that it adds its first argument to the

collection passed as its second argument.  Note that 7 source functions share this

method pattern.

The function description language is the major source of inductive bias in

SCAVENGER.  A good function description language should allow the index

hierarchy to divide the source base into groups that are neither too large nor too

small.  This criterion is difficult to quantify and offers little help in actually

designing description languages.  In the example interpretation domain, I have used

the heuristic of trying to pattern the source description language after the categories

people use to describe similar functions.17   In this example, "functions that insert

something in a collection" ((ADD-TO-COLLECTION ARG-0 ARG-1)) is such a category.

Similarly, INDEX-NODE-2 describes summation operators, another common category of

functions.  The description, (SUM ARG-0 ARG-1), indicates that the functions stored

under the index return the sum of the other two arguments.  Appendix 1 includes a

detailed discussion of the language used to describe functions in this domain.

Initializing targets

SCAVENGER's first action is to initialize the target problem.  Figure 19 shows the

initialized representation of the target problem.

17 Empirical tests not only show that this heuristic works well; they also show that the

algorithm is relatively insensitive to many aspects of this description language.
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Aspects of initialization include:

1. Determining which functions and classes in the transcript are analogical

targets.  SCAVENGER maintains data bases of user defined CLOS classes

and methods, and built-in LISP functions.  If a function in the target

transcript does not appear in either of

(?TARGET-FUNCTION-1)  ->  NULL

RESULT: RESULT
SIDE-EFFECTS:()
DEFINITION: ((NEW-OBJECT RESULT))

CONSUMERS: ( (?TARGET-FUNCTION-2  ARG-1)
( ?TARGET-FUNCTION-3  ARG-0))
    

(?TARGET-FUNCTION-2  SYMBOL  NULL )  ->  NULL

RESULT: RESULT
SIDE-EFFECTS:()
DEFINITION: ((NEW-OBJECT RESULT))

CONSUMERS: ()

(?TARGET-FUNCTION-3  NULL)  ->  SYMBOL

RESULT: RESULT
SIDE-EFFECTS:()
DEFINITION: ((NEW-OBJECT RESULT))

CONSUMERS: ()

INTERPRETATION 1

INDEX: ROOT

TARGET-METHODS:

TARGET-INDEX MAPPNG: ()

An initial interpretation of a target problem

Figure 19

these data bases, SCAVENGER assumes it is unknown. In the example,

the unknown targets are ?TARGET-FUNCTION-1, ?TARGET-FUNCTION-2, and

?TARGET-FUNCTION-3.

2. Proposing an initial interpretation of the semantics of target methods.

This default, "vanilla" semantics assumes that each target function

returns a new object and has no other side effects.  Although this is
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generally changed in the analogy, default interpretations are needed to

let the algorithm reason about partial analogies.

3. Making initial inferences about the types of target function arguments.

SCAVENGER infers information about the type of target arguments from

the target transcript.  In the example, ?TARGET-FUNCTION-2 takes a symbol

as its first argument; ?TARGET-FUNCTION-3 returns a symbol as a result.

Note that it is possible that these functions will actually accept more

general types than suggested by the target transcript; for example, many

functions that operate on integers will also accept floating point

numbers.    If the type of an argument cannot be inferred, SCAVENGER

assigns it the NULL type.  Since the NULL type is a subtype of all other

types, it will match any other type.

4. SCAVENGER will also store information about which target function

arguments are passed the results of other target functions.  This enables

the program to make inferences about the types of these arguments

when the types of objects passed to them are inferred.

3.4.2 Searching the index hierarchy

Search of the index hierarchy begins with the initial interpretation and the root of

the tree.  It searches the tree recursively according to the algorithm:

search-index (TARGET-PROBLEM, INDEX-NODE)

1) for each method in TARGET-PROBLEM that is not mapped to an index method,
construct all analogical mappings between it and the method pattern in 
INDEX-NODE.

construct a new interpretation of TARGET-PROBLEM for each successful
mapping.

if there are no successful mappings, return nil.

2) for every new interpretation produced by a match under step 1
 and for every CHILD of INDEX-NODE,
call: search-index(NEW-INTERPRETATION,  CHILD)

3) Return all interpretations produced by steps 1 & 2.
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Calling SEARCH-INDEX on the default interpretation of the target and the root

produces all matches with nodes in the index hierarchy.  These are not only matches

with leaf nodes, but include internal nodes as well.  The reason for retaining all

index matches is the uncertain nature of assumption based retrieval.  If the initially

preferred matches should fail to solve the target, SCAVENGER will need to try other

alternatives.  It does this by "failing back" to matches with internal index nodes.

Since these match fewer methods of the target problem, they allow SCAVENGER to

broaden its search of possible analogies.

Analogical matching

SCAVENGER's matcher will find all type consistent matches between a target and the

method pattern stored under the index (the source).  Analogical matches allow any

re-ordering of arguments.  Matching arguments and results is constrained according

to the following rules:

1. If the type of the target argument is a built-in LISP type18 , then it can

match an equivalent, or more general built-in type in the source.  The

justification for this is that functions often accept or return values that

are subtypes of the types specified in the function definition.  For

example, "+" is specified as taking numbers as arguments; however, it

can also accept and return integers.  On matching, the target type is

generalized to the type of the source.

2. An unmatched target-class can match any index-class or source-class.

An index-class is a "dummy" type that matches classes in the source

library (see figure 17).  A source-class may be any member of

SCAVENGER's source base.

3. If an argument is of type NULL, and the source type is a source-class or an

index-class, then check if the source-class is already bound to a target-

class.  If it is, assume the argument is of this target-class; otherwise,

create a new target-class, and bind it to the source.

18 Such as integer, symbol, list, etc.
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4. If a target-class is already matched to an index-class, it must match the

same index class.

5. If a target is already matched to a source class, it may match the same or

a more general source class.

On a successful match, SCAVENGER also updates the types of any arguments to other

target functions that use the result of the current target.  This update will generalize

the argument according to rules 2, 3, 4 and 5.19   If a result and argument do not

match according to these rules, the original target/source match fails.

Retrieval in the example problem

In our example, the target matches all three index nodes, producing three different

high-level interpretations.  One of these, resulting from the root, is simply the ini-

tial interpretation of figure 1920 .  The others are shown in figures 20 and 21.  In

larger index hierarchies, type constraints and differences in the number of function

arguments will eliminate many node matches.

3.4.3 Ranking interpretations

The next step is to rank these interpretations heuristically.  The most important

heuristic is a preference for interpretations resulting from matches with nodes deep

in the index hierarchy.  This measures the specificity of an interpretation, since

19 The genericity of many built-in LISP functions, such as CAR (whose return value depends

upon the types of the elements of the list it is passed) prevents making reliable inferences

about interacting type constraints of built-in LISP functions.  This is not as great a problem

with classes in the source library, since I have represented situations where the type of a

result depends upon the type of a method's arguments explicitly, using multiple function

entries for each such situation.  The extreme genericity of collection classes does not lead to a

proliferation of source entries, since the type of collection elements is simply T.
20 The source base includes other methods than those in the figure.  If retrieval cannot find

a match on any other nodes of the index, it will fail back to the root.  Completing the

interpretation afforded by this "match" leads to an exhaustive search of the source base.
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matches with deeper nodes in the hierarchy must satisfy more constraints.  This is a

general heuristic, and SCAVENGER uses it in all ap

(?TARGET-FUNCTION-1)  ->  NULL

RESULT: RESULT
SIDE-EFFECTS:()
DEFINITION: ((NEW-OBJECT RESULT))

CONSUMERS: ( (?TARGET-FUNCTION-2  ARG-1)
( ?TARGET-FUNCTION-3  ARG-0))
    

(?TARGET-FUNCTION-2  T  ?TARGET-CLASS-01 )  
                                                   ->  ?TARGET-CLASS-01

RESULT: ARG-1
SIDE-EFFECTS: ()
DEFINITION: ((ADD-TO-COLLECTION ARG-0 ARG-1))

CONSUMERS: ()

(?TARGET-FUNCTION-3  NULL)  ->  SYMBOL

RESULT: RESULT
SIDE-EFFECTS: ()
DEFINITION: ((NEW-OBJECT RESULT))

CONSUMERS: ()

INTERPRETATION 2

INDEX: INDEX-NODE-1

TARGET-METHODS:

TARGET-INDEX MAPPNG:
 ( ?TARGET-CLASS-01 -> INDEX-CLASS-01,
       ?TARGET-FUNCTION-2 -> INDEX-METHOD-92 )

A partial interpretation

Figure 3.20

plications.  If this heuristic produces a tie for the best interpretation, SCAVENGER will

break it using domain-specific heuristics.  These heuristics consider systematic

properties of the target under an interpretation, and are often costly to evaluate;

consequently, SCAVENGER does not do this unless it is necessary.

An example of heuristics for ranking candidate analogies

As mentioned in section 3.1, the domain shown in the current example grew out of

an interest in the problem of communicating general concepts using examples.  The

most obvious factor in such communications is the assumption, made by both

parties, that examples will be structured so as to communicate, rather then mislead.

This assumption forms the basis for most of the heuristics I have developed for this

domain.
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INTERPRETATION 3

INDEX: INDEX-NODE-2

TARGET-METHODS:

TARGET-INDEX MAPPNG:
 ( ?TARGET-CLASS-01 -> INDEX-CLASS-31,
       ?TARGET-FUNCTION-2 -> INDEX-METHOD-83 )

(?TARGET-FUNCTION-1)  ->  NULL

RESULT: RESULT
SIDE-EFFECTS:()
DEFINITION: ((NEW-OBJECT RESULT))

CONSUMERS: ( (?TARGET-FUNCTION-2  ARG-1)
( ?TARGET-FUNCTION-3  ARG-0))
    

(?TARGET-FUNCTION-3  NULL)  ->  SYMBOL

RESULT: RESULT
SIDE-EFFECTS: ()
DEFINITION: ((NEW-OBJECT RESULT))

CONSUMERS: ()

(?TARGET-FUNCTION-2  T  ?TARGET-CLASS-01 )  
                                                   ->  ?TARGET-CLASS-01

RESULT: ARG-1
SIDE-EFFECTS: ()
DEFINITION: ((SUM  ARG-0 ARG-1))

CONSUMERS: ()

A

partial interpretation

Figure 3.21

SCAVENGER sorts candidate interpretations according to the weighted sum21  of

the following evaluations (all heuristic values are normalized to values between 0

and 1):

1. Minimize the number of different source classes used in the analogy.

This heuristic is based on the assumption that an example is most

probably intended to illustrate the behavior of a small number of target

classes.

21 I set the weights by hand in an effort to improve results.  As I will discuss in chapter 4, I

found that the particular settings were more important in the early stages of training

SCAVENGER's retrieval mechanism.  Once it developed its index hierarchy, performance

became relatively insensitive to the heuristics used.  The results of its learning algorithm are

much more important to SCAVENGER's performance than the heuristics used or their

weightings.
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2. Prefer interpretations that minimize the ratio of method side-effects to

methods.  This heuristic assumes that examples would not include

more than a few unseen side-effects, since this would be misleading.

3. Prefer analogies that have mapped the largest number of target function

arguments.  Such mappings will have satisfied more type constraints;

consequently, they are more likely to be "correct.".
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?TARGET-FUNCTION-1

?TARGET-FUNCTION-2

?TARGET-FUNCTION-3

INSTANCE OF NULL

INSTANCE OF TARGET-CLASS-01  #1

A

B

?TARGET-FUNCTION-2

B

?TARGET-FUNCTION-3

A

INSTANCE OF TARGET-CLASS-01  #1

Explanation of target problem based on INTERPRETATION-2

Figure 22

The next two heuristics analyze the explanation of the target problem produced

by each interpretation.  Explanations are bipartite graphs, with nodes for functions

and objects (arguments and results).  Each object node reflects a given state of an

object; if a function makes changes to an argument, the modified instance appears as
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a new object node.  Figure 22 shows the graph of the target problem under

INTERPRETATION-2.  Because ?TARGET-FUNCTION-2 specifies that its result is a modified arg-1,

(ADD-TO-COLLECTION ARG-1), the graph shows this function returning a modified instance

of TARGET-CLASS-01.  In contrast, ?TARGET-FUNCTION-3 is not assumed to change any of its

arguments, so both calls to it operate on the same instance.

Figure 23 shows the graph of the target problem produced under INTERPRETATION 3.

Note that since the interpretation does not assume that any of the target functions

change their arguments: all calls to ?TARGET-FUNCTION-2 and ?TARGET-FUNCTION-3 operate

on the same instance produced by ?TARGET-FUNCTION-1.

?TARGET-FUNCTION-1

?TARGET-FUNCTION-2 ?TARGET-FUNCTION-3

INSTANCE OF NULL

A

B

?TARGET-FUNCTION-3

A

?TARGET-FUNCTION-2

B

INSTANCE OF TARGET-CLASS-01  #1INSTANCE OF TARGET-CLASS-01  #1

Explanation of target problem based on INTERPRETATION-3

Figure 23

The remaining heuristics analyze these graphs:

4. Prefer graphs such as that in figure 21, in which functions tend to

modify objects, over graphs such as figure 22, where functions do not

modify object instances.  The rationale for this heuristic is that since

programs written in an object-oriented language like CLOS frequently

use methods to change the state of objects, examples should illustrate at
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least a few such changes.  The graph of figure 23 has one object, created

by ?TARGET-FUNCTION-1, which is not modified by any subsequent function

calls; the graph of figure 22 performs successive modifications to

(INSTANCE OF TARGET-CLASS-01 #1).  This heuristic maximizes this as the

ratio of the total number of different object instances appearing as

function arguments to the total number of function arguments.  In the

graph of figure 22, this ratio is 4/6; in the graph of figure 23, it is 3/6.

5. The final heuristic is graph-connectivity.  Prefer interpretations that

produce a single, connected graph, over disconnected graphs.  The basis

of this heuristic is the belief that an example should communicate a

single idea, rather than multiple ideas.  It is reasonable to interpret a

disconnected graph as demonstrating multiple ideas.

In the current example, INTERPRETATION-2 and INTERPRETATION-3 have the same

evaluations for all heuristics except #4.  This leads to the ranking:

{INTERPRETATION-2, INTERPRETATION-3, INTERPRETATION-1}

3.4.4 Completing analogies

The process of completing analogies proceeds according to the algorithm:

1) Each index stores a number of index-source mappings.  Compose the analogy
between the target and the index-methods with each of these mappings.  This
produces a set of partial target-source analogies; these are partial in that some target
methods may not be mapped.

2) Complete these partial analogies exhaustively.  Note that the resulting analogies
may have different interpretations.

3)   Group these analogies by common interpretation.  Sort these interpretations using
the heuristics described in section 3.6.

Examples of these steps are:

Composing target-index mappings and index-source mappings

In the target example we are discussing, INTERPRETATION-2 has the following mapping

between target classes and methods, and its index classes and methods:
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?TARGET-CLASS-1 -> INDEX-CLASS-01
?TARGET-FUNCTION-2 -> INDEX-METHOD-92

In turn, the index stores mappings between its class and method and each stored

source.  Composing these mappings produces 7 partial analogies; these appear in

figure 24 (in order to simplify the figure, I have omitted the argument mappings.

These are composed in the obvious way).

?TARGET-CLASS-1 -> STACK
?TARGET-METHOD-1 -> ?
?TARGET-METHOD-2 -> PUSH
?TARGET-METHOD-3 -> ?

?TARGET-CLASS-1 -> QUEUE
?TARGET-METHOD-1 -> ?
?TARGET-METHOD-2 -> ENQUEUE
?TARGET-METHOD-3 -> ?

?TARGET-CLASS-1 -> BAG
?TARGET-METHOD-1 -> ?
?TARGET-METHOD-2 -> ADD
?TARGET-METHOD-3 -> ?

?TARGET-CLASS-1 -> SET
?TARGET-METHOD-1 -> ?
?TARGET-METHOD-2 -> ADD
?TARGET-METHOD-3 -> ?

?TARGET-CLASS-1 -> DEQUE
?TARGET-METHOD-1 -> ?
?TARGET-METHOD-2 -> ENQUEUE-FRONT
?TARGET-METHOD-3 -> ?

?TARGET-CLASS-1 -> SORTED-QUEUE
?TARGET-METHOD-1 -> ?
?TARGET-METHOD-2 -> INSERT
?TARGET-METHOD-3 -> ?

?TARGET-CLASS-1 -> DEQUE
?TARGET-METHOD-1 -> ?
?TARGET-METHOD-2 -> ENQUEUE-REAR
?TARGET-METHOD-3 -> ?

Partial analogies under INTERPRETATION-2

Figure 24

Completing partial analogies

SCAVENGER completes these partial analogies exhaustively.  Although this could be

an expensive operation, partial analogies usually incorporate enough type

constraints to prune the space of possible sources.  This is particularly likely after

SCAVENGER has developed an extensive index and targets match nodes deeper in the

hierarchy.  Also, SCAVENGER maintains an additional index of methods by the
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classes that appear in their arguments, this simplifies retrieval of relevant sources as

target types become known.

(?TARGET-FUNCTION-1)  ->  TARGET-CLASS-01

RESULT: RESULT
SIDE-EFFECTS:()
DEFINITION: ((NEW-OBJECT RESULT))

    
(?TARGET-FUNCTION-2  T  ?TARGET-CLASS-01 )  
                                                   ->  ?TARGET-CLASS-01

RESULT: (ADD-TO-COLLECTION  ARG-1)
SIDE-EFFECTS: ()
DEFINITION: ((ADD-TO-COLLECTION ARG-0 ARG-1

(?TARGET-FUNCTION-3  TARGET-CLASS-01)  
                                                       ->  3

RESULT: RESULT
SIDE-EFFECTS: ()
DEFINITION: ((PROPERTY-TEST ARG-0))

INTERPRETATION-4

TARGET-METHODS:

ANALOGIES:

?TARGET-CLASS -> STACK
?TARGET-FUNCTION-1 ->  MAKE-STACK
?TARGET-FUNCTION-2 ->  PUSH
?TARGET-FUNCTION-3  -> EMPTY-P

?TARGET-CLASS -> QUEUE
?TARGET-FUNCTION-1 ->  MAKE-QUEUE
?TARGET-FUNCTION-2 ->  ENQUEUE
?TARGET-FUNCTION-3  -> EMPTY-P

?TARGET-CLASS -> BAG
?TARGET-FUNCTION-1 ->  MAKE-BAG
?TARGET-FUNCTION-2 ->  ADD
?TARGET-FUNCTION-3  -> EMPTY-P

A high-level interpretation and its set of similar analogies

Figure 25

Completing the 7 partial analogies of figure 24 produces 14 complete analogies; a

single partial analogy can have multiple completions.  SCAVENGER groups these

analogies by common interpretation; this grouping improves the efficiency of

testing the analogies and updating the index hierarchy.  Figures 25 and 26 show the

two interpretations produced for the target problem, and a portion of the analogies

stored under them.

In figure 25, INTERPRETATION-4 describes a group of data structures, with

functions for creating them, adding elements to them and testing if they are empty.

INTERPRETATION-5 (figure 26) describes another group of data structure classes, with

functions for creating them, adding elements to them and removing elements from

them.
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Ranking completed interpretations

SCAVENGER next sorts these new interpretations using the heuristics described in

section 3.4.3.  In this example, SCAVENGER ranks INTERPRETATION-5 over INTERPRETATION-4.

(?TARGET-FUNCTION-1)  ->  TARGET-CLASS-01

RESULT: RESULT
SIDE-EFFECTS:()
DEFINITION: ((NEW-OBJECT RESULT))

    
(?TARGET-FUNCTION-2  T  ?TARGET-CLASS-01 )  
                                                   ->  ?TARGET-CLASS-01

RESULT: ARG-1
SIDE-EFFECTS: ()
DEFINITION: (ADD-TO-COLLECTION ARG-0 ARG-1))

(?TARGET-FUNCTION-3  TARGET-CLASS-01)  
                                                       ->  3

RESULT: RESULT
SIDE-EFFECTS: (ARG-0)
DEFINITION: ((REMOVE-FROM-COLLECTION RESULT ARG-0))

INTERPRETATION-5

TARGET-METHODS:

ANALOGIES:

?TARGET-CLASS -> STACK
?TARGET-FUNCTION-1 ->  MAKE-STACK
?TARGET-FUNCTION-2 ->  PUSH
?TARGET-FUNCTION-3  -> POP

?TARGET-CLASS -> QUEUE
?TARGET-FUNCTION-1 ->  MAKE-QUEUE
?TARGET-FUNCTION-2 ->  ENQUEUE
?TARGET-FUNCTION-3  -> DEQUEUE

?TARGET-CLASS -> DEQUE
?TARGET-FUNCTION-1 ->  MAKE-DEQUE
?TARGET-FUNCTION-2 ->  ENQUEUE-FROJT
?TARGET-FUNCTION-3  -> DEQUEUE-FRONT

Another high-level interpretation and its set of similar analogies

Figure 26

3.4.5 Testing analogies

Given a prioritized list of complete analogies, SCAVENGER evaluates them in order,

stopping when it finds an analogy that runs the target example.  SCAVENGER

evaluates the analogies in each high-level interpretation produced under 3.4.4.  In

our example, it tries INTERPRETATION-5 first.
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Sorting analogies in an interpretation

INTERPRETATION-5 contains 7 analogies.  Notice that the STACK analogy will correctly run

the target transcript, as will the mapping of the target-class onto a DEQUE22 , with

?TARGET-FUNCTION-2 mapping onto ENQUEUE-FRONT, and ?TARGET-FUNCTION-3 mapping onto

DEQUEUE-FRONT.

In order to choose between such equivalent mappings, SCAVENGER uses the

heuristic of preferring analogies that leave the fewest methods of the source class[es]

unmapped.  This is a form of preferring the most general problem solution.  In this

case, that ranks STACK over DEQUE.  SCAVENGER sorts the analogies before testing.

Testing analogies

SCAVENGER tests analogies by trying to run the initial transcript under the analogical

substitution, stopping on success.  In this case, it stops when it finds that the STACK

analogy successfully runs the target example:

(SETQ X (MAKE-STACK))  ->  #<STACK #x306629>
(PUSH 'A X)  ->  #<STACK #x306629>
(PUSH 'B X)  ->  #<STACK #x306629>
(POP X) ->  B
(POP X)  ->  A

SCAVENGER returns this result as its interpretation of the target transcript:

   Class map.

     TARGET -----> STACK

   Method map.

     ?TARGET-FUNCTION-2 -----> POP

          arg-0 --> arg-0

     ?TARGET-FUNCTION-3 -----> MAKE-STACK

     ?TARGET-FUNCTION-1 -----> PUSH

          arg-0 --> arg-0; arg-1 --> arg-1

     The quality of fit to the source class was 0.600

22 Double-ended-queue.

111



It inferred the following causal structure:

?TARGET-FUNCTION-3 takes arguments: NIL

         returns result: RESULT

         Function has description: ((NEW-OBJECT RESULT))

?TARGET-FUNCTION-1 takes arguments: (ARG-0 ARG-1)

         returns result: ARG-1

         Function has description: ((ADD-TO-COLLECTION ARG-0 ARG-1))

?TARGET-FUNCTION-2 takes arguments: (ARG-0)

         returns result: RESULT

         and produces side effects on: (ARG-0)

         Function has description: ((REMOVE-FROM-COLLECTION RESULT ARG-0))

3.4.6 Handling failed index matches

Sometimes, an index match will fail to produce a successful analogy.  In such cases,

the algorithm will try the next match in the sorted list produced in section 3.4.  If

matches fail to produce a successful analogy, the algorithm will eventually fail back

to the root; since the root matches no target methods or classes, completing this

analogy will effect an exhaustive search of the space of all possible analogies.

This process may produce redundant analogies, since each parent node implicitly

includes all analogies that will result from its children.  Since testing them adds to

the program's overhead, SCAVENGER maintains a list of all interpretations it has

tried and eliminates any new analogies that match interpretations in this list.  By

comparing new analogies to the high-level interpretations in this list, SCAVENGER

can detect redundant analogies more efficiently than if it had to search all specific

target-source mappings previously tried.

3.4.7 Updating the hierarchy

SCAVENGER's final task is to update the index hierarchy.  It does so empirically, using

the interpretations produced under section 3.4.4 as positive and negative training

instances.  An interpretation is positive if it contains at least one successful analogy.

In this example, INDEX-NODE-2 produced two interpretations: INTERPRETATION-5 is the

positive instance, and INTERPRETATION-4 is the negative instance.
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SCAVENGER specializes the index that generated these interpretations by

examining every target method that was not matched in the original index match.

In this example, these are ?TARGET-FUNCTION-1, and ?TARGET-FUNCTION-3.  It partitions the

interpretations according to the interpretations the successful analogy gives these

functions.  Figure 3.18 shows the two partitions produced by specializing on

different target functions.  The description of ?TARGET-FUNCTION-1 was the same in both

interpretations, therefore it does not distinguish them.  The descriptions of ?TARGET-

FUNCTION-3 differ between interpretations, so it creates two partitions.

Partitioning on ?TARGET-FUNCTION-1:

INTERPRETATION-4

INTERPRETATION-5

Partitioning on ?TARGET-FUNCTION-3:

INTERPRETATION-4 INTERPRETATION-5

Partition 1

Partition 2

Partitions of target interpretations produced by two candidate specializers

Figure 27

After selecting the best partition, SCAVENGER uses the method description from

the successful analogy to specialize the parent index.  It stores all matching source

functions (whether they ran the target problem successfully or not) under this index.

This is necessary, since future target problems may require these other sources.  In

our example, the best partition arises from splitting on ?TARGET-FUNCTION-3, using the

interpretation provided by INTERPRETATION-5.  This leads to the revised hierarchy of

figure 27.

It is worth recalling that on future retrievals, matches with INDEX-NODE-3 will build

upon matches with INDEX-NODE-1.  Any match with INDEX-NODE-3 must include matches

with INDEX-METHOD-92 and INDEX-CLASS-01.
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Information-theoretic partition selection

The proper specialization of the index hierarchy was obvious in the above example;

in general, this will not be the case.  SCAVENGER chooses among candidate

specializations using a variation of the information-theoretic evaluation function

used in the ID3 induction algorithm (Quinlan 1986).  ID3 constructs a decision tree in

a top down fashion; it determines the test to perform at each node by choosing the

test that gives the largest information gain in solving the example problem.  The

ID3 approach has the advantage of producing

ROOT

(INDEX-METHOD-92  T  INDEX-CLASS-01)
                              ->  INDEX-CLASS-01

RESULT: ARG-1
SIDE-EFFECTS: ()
DEFINITION: ((ADD-TO-COLLECTION ARG-0 ARG-1))

(INDEX-METHOD-83 INDEX-CLASS-31  INDEX-CLASS-31)
-> INDEX-CLASS-31

RESULT: RESULT
SIDE-EFFECTS: ()
DEFINITION: ((SUM ARG-0 ARG-1))

Index Hierarchy

INDEX-NODE 1 INDEX-NODE 2

INDEX-NODE-3

(INDEX-METHOD-100  INDEX-CLASS-01)
                                   ->  T

RESULT: RESULT
SIDE-EFFECTS: (ARG-0)
DEFINITION: ((REMOVE-FROM-COLECTION RESULT ARG-0

An updated version of the index of figure 18

Figure 28

small decision trees; this should help SCAVENGER produce highly efficient and

selective index hierarchies.
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Shannon (1948) defined the information content of a message as a function of

the probabilities of the occurrence of all possible messages.  This is computed as the

sum across all potential messages, m of:

Σ - p(m) log   p(m) 
2

where p(m) is the probability of a message occurring.  Applying it to SCAVENGER, we

can compute the information content of a set of positive and negative

interpretations by treating each interpretation as a message.  The probability of a

positive interpretation is simply the proportion of positive interpretations.  In our

example, we begin with one positive and one negative interpretation:

?INTERPRETATION-4 and ?INTERPRETATION-5.  Consequently, the information required to

complete the partial analogy produced by the match with INDEX-NODE-1 is:

- p(positive) log2 p(positive) - p(negative) log2 p(negative)
=  - 1/2 log2 1/2  - 1/2 log2 1/2
= -1/2 (-1) -1/2(-1)
= 1 bit

We can also measure the information in each candidate partition of the set of

interpretations produced by different candidate specializers of the original index.

For example, partition 1 of figure 27 has information content of 0 bits; partition 2 has

information content of 1 bit.

We can compute the information gain from partitioning the interpretation set

on a given method description by subtracting the information content of the

original set of interpretations from the weighted average of the information content

of all components of the partition.  The average is weighted according to the

proportion of the original interpretations in each component of the partition.

For partition 1, the information gain = 1 - 1 = 0.  For partition 2, the information

gain = 1 - 0 = 1.  It follows that partition 2 is preferable.  This leads to the choice of

?TARGET-FUNCTION-3 as an index specializer.  If there is no information gain on any

partition, the index hierarchy remains unchanged.

115



SCAVENGER's use of information-theoretic evaluations differs from ID3 along a

number of important dimensions:

1. It does not have a teacher to classify positive and negative instances, but

must classify them itself.

2. Because it does not test all candidate analogies, its classification may be

wrong in that certain interpretations may be falsely taken as negative

instances.  In attempting to learn meaningful generalizations from

such ambiguous training data, SCAVENGER addresses a problem

frequently found in realistic learning problems.

3. Unlike ID3, SCAVENGER does not produce a branch of the tree for each

partition of the target problems; it only produces one branch for the

partition known to contain the positive interpretation.

4. The classification of sources as positive and negative is only valid in the

context of the current target problem.  Will the index hierarchies

produced in this fashion be useful on future targets that may lead to

different interpretations?

Nonetheless, adaptation of ID3's metric was straightforward, and has given good

results.

3.4.8 Conclusion

This chapter has described the architecture of SCAVENGER.  Although it is a complex

algorithm, it has evolved in a natural way from the interactionist model of source

retrieval.  In particular, many of the design decisions arose from an effort to

integrate the three components of the interactionist model into a single program.

These components were:

1. The interleaving of retrieval and inference in its assumption based

retrieval algorithm.

2. The measurement of similarity using systematic evaluations of the

structure of the target problem.
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3. Updating of the index hierarchy on the basis of experience in solving

target problems.  This represents a transfer of knowledge of the

relevance of source methods from the target to the source.

Another interesting aspect of SCAVENGER is its ability to represent and use of

interpretation at multiple levels of abstraction.  By groupings analogies with

matching semantics. and reasoning with these high-level interpretations, rather

than individual analogies, SCAVENGER can improve the efficiency of many of its

operations.

As with any complex AI algorithm, SCAVENGER's behavior is difficult to predict.

One danger is that the cost of computing SCAVENGER's heuristics will outweigh the

gains made in prioritizing and pruning candidate analogies.  Another danger is that

target problems will be so diverse as to frustrate all of SCAVENGER's efforts to acquire

useful indices.  These and other issues can only be tested empirically.

3.5 Testing SCAVENGER

Due to its inherent complexity and the nature of its theoretical foundations,

SCAVENGER raises a number of questions that require empirical investigation:

1. SCAVENGER is a complex program.  Rather than retrieving sources on

the basis of simple features, it matches entire target method

descriptions with nodes in the index hierarchy.  The heuristics it uses

to rank hypothesized solutions construct and analyze graphs of the

entire target problem.  Will the complexity of matching indices and

ranking candidate matches overwhelm any efficiency gains it makes

through its learning and retrieval mechanisms?  Will SCAVENGER's

performance scale well as the size of the source base grows?

2. In selecting sources, SCAVENGER transfers properties to target problems

on a non-monotonic basis, evaluating these assumptions to select

among competing sources.  It is inevitable that some of these

assumptions will be wrong.  Will the cost of constructing, testing and

maintaining these alternative hypotheses nullify the gains of

SCAVENGER's indexing system?
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3. Like all hierarchical indexing systems, SCAVENGER forms categories of

sources.  However, instead of forming categories based on source

properties, SCAVENGER forms them from patterns found in target

problems.  Each index in the hierarchy represents a set of function

definitions that have appeared together in target problems.  In the

example of this chapter, SCAVENGER learned that functions that add

items to collections (push, enqueue, etc.) frequently interact with functions

that remove them (pop, dequeue, etc.).  It follows that SCAVENGER's

indices will be of general utility only if a sufficient number of patterns

recur across targets.  Will SCAVENGER find enough recurring target

patterns in real problem domains to justify this approach?

4. SCAVENGER's performance depends heavily on the language used to

describe source and target methods.  Such a description language

should help the indexing system form categories of similar sources, but

should support sufficiently fine grained distinctions to discriminate

sources.  These two criteria must be balanced in the method description

language if SCAVENGER is to form useful categories of source methods.

Is the design of an effective description language a prohibitively hard

problem, or will "natural," intuitive descriptions of source methods

lead to effective retrieval?

5. Analogical and case-based reasoning programs must balance store-

compute trade-offs: if a reasoner stores too many sources, the cost of

retrieval will counteract the gains of re-using source solutions; if it

stores too few, it will lack sufficient knowledge to solve a variety of

target problems.  SCAVENGER addresses this issue in two ways: Instead

of saving entire problem solutions, it merely stores components of

similar problem solutions, reconstructing a source for each new target.

By exploiting similarities across target problems, this should reduce the

number of sources that must be stored, but requires that SCAVENGER

pay a greater overhead in reconstructing analogies when solving target

problems.  Second, the information-theoretic evaluation function used

to select index specializers only adds an index node if it leads to a gain
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in information about the current target problem.  If there is no

information gain, then SCAVENGER does not add a node; this should

keep the index hierarchy from adding extraneous nodes.  However,

different target problems provide different values for this analysis; will

this cause the hierarchy to grow excessively?

In attempting to find answers to these questions, I have tested SCAVENGER on three

different problem domains.  These are:

3.5.1 Interpreting examples of LISP function behavior

This domain, which provided the examples of this chapter, provided the initial tests

of the algorithm; indeed, much of the original motivation for SCAVENGER's design

came from this domain.  The evaluations performed on this domain include:

1. Speed-up over successive trials.  I have evaluated SCAVENGER's ability to

improve retrieval using the standard machine learning approach of

testing the performance of an untrained version of the algorithm on a

set of test problems, training it on a different set of training problems,

and measuring the improvement on the original test problems.  This

tests the algorithm's ability to generalize learned knowledge to new

problems.

2. Scalability.  I have tested SCAVENGER's behavior as the size of the source

base grows.  The complexity of exhaustive search grows exponentially

with the size of the source base, SCAVENGER's learning ability must be

able to manage this growth in complexity.

3. Reliability of heuristics.  The algorithm described in this chapter "fails

back" to more general index nodes if its first choice does not find a

problem solution.  Although SCAVENGER will find a solution if one

exists, failure to find a solution quickly leads to a performance penalty

resulting from the added overhead of maintaining and sorting

multiple matches with the index hierarchy.  What percentage of the

time does SCAVENGER actually solve a problem on the first index match

tried?  If the hierarchy fails to find a solution, and SCAVENGER must
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"fail back" to an exhaustive search, how bad can the added overhead

get?

4. Reduction in variations in problem solution time.  In many domains,

untrained versions of the algorithm can experience several orders of

magnitude variation in the times needed to solve different target

problems.  Can learning reduce the variation in solution times?

5. Comparison to source oriented retrieval methods.  It is interesting to

compare SCAVENGER to a more traditional, source oriented retrieval

mechanism.  I have implemented and tested a more traditional

retrieval algorithm that constructs an index hierarchy independently of

any information about target problems; it does this using a common

clustering technique of comparing sources to each other to find

effective partitions.

Chapter 4 discusses the results of these evaluations.

3.5.2 Finding bugs in failed procedures

Diagnostic problems are an interesting application for the SCAVENGER algorithm; the

second test domain demonstrates SCAVENGER's to find bugs in failed procedures.  In

this domain, SCAVENGER is given a description of a procedure, along with its

anomalous results.  Using a source base of functions describing both successful and

failed plan operators, SCAVENGER attempts to construct a mapping between the

target procedure and these source descriptions that explains the cause of the plan's

failure.

Chapter 5 discusses such an application.  The domain I have used is the detection

of bugs in children's subtraction skills.  This builds on work by (Brown and Burton

1978a;  Brown and Burton 1978b;  Brown and VanLehn 1980) in the development of

a theory of children's problems with arithmetic, and demonstrates SCAVENGER's

generality by using it to solve an independently formulated problem.  In testing

SCAVENGER on this domain, I have used actual examples of children's buggy

subtraction provided to me by Kurt VanLehn.  Using this data, I have been able to
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test SCAVENGER's ability to find useful, recurring patterns of analogy in real problem

situations.

This test repeats tests 1, 2 and 4 from the previous domain.  For reasons I will

discuss in chapter 5, the other tests were either not relevant or not possible in this

domain.  However, I have added additional tests that explore SCAVENGER's ability to

duplicate human solutions of these problems, and the problem of designing a

language for describing source methods.

This domain demonstrates an interesting alternative diagnostic mechanism:

most debugging programs are analytic in their approach, reasoning about problems

to identify causes of failure.  SCAVENGER, in contrast, does not reason about target

problems, it merely learns to spot familiar patterns of source behaviors.  It is

interesting to note the effectiveness of such a simple problem solving strategy when

coupled with a powerful learning mechanism.

3.5.3 Reasoning about Simulations

Because it tests its analogies by evaluating LISP programs, SCAVENGER should prove a

valuable tool for simulation based reasoning about physical systems.  Qualitative

Process theory (Forbus 1984) is a model of the way in which humans reason

qualitatively about simple physical systems, and a promising test application for this

idea.  I have applied SCAVENGER to the problem of interpreting the behavior of

simple qualitative simulations.  Unlike the two previous problems, I have not

developed this domain beyond a small proof of concept.  However, this small

application further demonstrates SCAVENGER's generality and is discussed in chapter

6.
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4

Evaluating SCAVENGER: Interpreting Tutorial Examples of LISP Methods

                                                                                                                                                                        

When you get interested in anything you start looking around for analogies; most
scientists do, that's one of the best routes.

Alan Kay
Kay + Hillis
Wired Magazine, January 1994

This chapter describes a group of experiments designed to measure the effectiveness

and efficiency of SCAVENGER's retrieval and learning algorithms23 .  These

experiments applied SCAVENGER to the problem of interpreting tutorial examples of

LISP function behavior; this was introduced and discussed in more detail in chapter

3.  Very often, humans communicate general ideas through specific examples;

somehow, the listener is able to interpret the example in such a way as to infer the

intended generalization.  One mechanism for performing this interpretation is the

construction of analogies with things the listener already knows.

4.1 The selection and representation of test data

4.1.1 The source base

The tests described in this chapter use a source library of 22 classes and 152 methods.

The library includes classes from a diverse selection of application domains.  These

domains, along with the number of classes and methods in each, appear in table 1.

Appendix 1 describes these sources in detail, and also discusses the language used to

describe method semantics.

In building the source library, I have attempted to avoid biases that might favor

SCAVENGER by basing sources on pre-existing class definitions wherever possible.

The data structure classes and methods are the basic abstract data types taught in

intermediate computer science courses.  The complex number, rational number and

23 These tests were performed on a Macintosh II computer.
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string classes simply embed corresponding LISP functions in CLOS class definitions.

The object oriented data-base is part of the SCAVENGER implementation.  The

thermostat simulation is taken from an example in an AI textbook (Luger and

Stubblefield 1993).  Other domains, such as accounting, date arithmetic and

investments are well constrained by "real world" definitions.

Domain # classes # methods

Accounting 2 13
Complex numbers 1 9
Data structures 8 55
Date arithmetic 1 13
Investments 3 9
Location using x-y co-ordinates 1 6
Object-oriented data base 1 7
Rational numbers 1 10
Strings 1 15
Thermostat-room-heater simulation 3 15

Totals 22 152

Source classes and methods listed by domain

Table 1

4.1.2 Representing target problems

Target problems are examples of the behavior of unknown target classes and

methods.  The goal of an interpretation is an analogy between the target and a

known source that runs the target example correctly.  As described in chapter 3,

target problems are transcripts of LISP evaluations, where each evaluation has the

form: <evaluated-form>  -> <result>.  The tests in this chapter used a set of 112 test

problems, taken from across all the source domains.  A typical target problem (taken

from the rational number domain) is:

(setq x (?target-function-1 1 3)) -> (instance target-class 1)

(setq y (?target-function-1 1 4)) -> (instance target-class 2)

(setq z (?target-function-4 x y)) -> (instance target-class 3)
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(?target-function-2 z) -> 7
(?target-function-3 z) -> 12

The intended interpretation is:

target-class = rational

?target-function-1 = make-rational

?target-function-2 = get-numerator

?target-function-3 = get-denominator

?target-function-4 = +

In creating test problems, I was guided by two goals:

1. To reflect a reasonable effort to communicate information about the

target.  Test problems, like good tutorial examples, may be complex, but

they should not be intended to deceive the listener.

2. Like good examples, each problem should attempt to communicate a

single idea.

Other than adhering to these criteria, I tried to produce a variety of test problems.

Appendix 2 describes the test problems in more detail.

4.2 Learning in SCAVENGER

The first evaluation tests SCAVENGER' S ability to learn.  The standard method of

testing machine learning algorithms uses two sets of problems: one to train the

learning algorithm, and the other to measure its improvement.  This measures the

ability of the algorithm to learn things that will generalize across problem instances.

I have tested SCAVENGER according to the following procedure:

1. Randomly divide the complete set of test problems into separate test and training
sets.

2. Initialize SCAVENGER's index hierarchy to a single, empty root node.

3. Disable learning, and measure the algorithm's baseline performance on both the
test and training sets.

4. Enable learning.
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5. Train SCAVENGER across repeated trials using the entire training set on each trial.
Re-order the training set for each trial.

6. Disable learning.

7. Run the test set again to measure improvement.

I ran this procedure 6 times and averaged the results in order to smooth any

variations that might result from the selection and ordering of test and training

problems.  In performing these evaluations, the variations proved relatively minor,

and it was clear that this relatively small number of repetitions was sufficient to

manage this noise.

4.2.1 Speedup over trials

The graph of figure 29 shows the algorithm's speedup over successive trials.

SCAVENGER achieved a 70% improvement on the training set.  Note also that the

algorithm stabilized after the third run.  At this point, SCAVENGER's learning

algorithm found no further opportunities to improve the index, and stopped adding

nodes.
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Improvement in mean execution times per problem across training runs.
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Figure 29

Another useful measure of SCAVENGER' S performance is the number of

analogies that it tested before finding a solution.  This is important, since many

potential applications may require experiments in the physical world, which may be

difficult, expensive or even dangerous.  The ability to reduce needed experiments is

a desirable property of an empirical learning algorithm.  As shown in figure 30, the

reduction in number of tests across training runs parallels the time speedup.
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Reduction in number of analogies tested across training runs.
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Figure 30

Runs on the test problems measure SCAVENGER's ability to generalize across

problem sets.  As might be expected, the speedups here are not as great, but remain

significant.  The speedup in time and reduction in analogies tested on the test

problems are given in table 2.  It is interesting to note the difference in the

algorithm's improvement when measured as the time to solve problems as

opposed to the number of tests performed.  The explanation for this difference is in

the added time required to try and match target problems with index nodes that

failed to lead to complete analogies.  While partial analogies that could not be

completed do not add to the number of tests performed, they do take time to detect.

This is more likely to happen if the problem is completely novel, so it should occur

more frequently with the test problems.
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Time per problem Tests per problem

Before training 19.36 sec 24.21
After training 10.5 sec 10.68

Improvement 45.76% 55.88%

Speedup on test problems

Table 2

4.2.2 Variations in target complexity

An interesting aspect of SCAVENGER's problem domain is the wide variation in

execution times across different problem instances.  On untrained versions of the

algorithm (performing exhaustive search), the longest problem solution time was

684 seconds, while the shortest was 1 second.  This variation is due to a number of

factors, including the number of methods in the target problem, the number of

arguments in target methods, the number of arguments for which the type is

known, and the number of targets with identical signatures.  An example of a short,

but hard problem is:

(setq x (?target-function-1 7 4 1994)) -> (instance target-class 1)
(?target-function-2 x) -> 7
(?target-function-3 x) -> 4
(?target-function-4 x) -> 1994

The correct solution to this problem maps ?target-function-1 onto the make-date function

of the date class, with ?target-function-2, ?target-function-3 and ?target-function-4 mapping

onto get-month, get-day and get-year, respectively.  It took 514 seconds for an untrained

version of SCAVENGER to solve this problem.  The main reason for its difficulty is

the large number of target methods that take a single class instance as their

arguments, and return a result of either integer or a more general type, as do three

of the methods in the problem.  For example, the date class alone has 8 such

methods.  There are 83 or 512 mappings between these functions and targets 2, 3, and

4.  In addition, there are 6 different mappings between the arguments of make-date

and ?target-function-1, giving a total of 3072 different syntactically allowable analogies

with methods of the date class alone.  Furthermore, several other domains can
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produce syntactically allowable analogies with these targets which must be

evaluated.  In contrast, a problem like

(setq x (?target-function-1)) -> (instance target-class 1)
(?target-function-2 1 'a x) -> (instance target-class 1)
(?target-function-2 2 'b x) -> (instance target-class 1)
(cdr (?target-function-3 2 x)) -> b24

is much easier, since few sources can take an integer, symbol and target class

instance as arguments, as with ?target-function-2.

These hard problems exerted a strong influence on the evaluation of

SCAVENGER's performance.  Figure 31 shows the improvement in median problem

solution times over learning trials.  The flatness of this graph in comparison to the

graph of average solution times suggests that many of the benefits of learning in

SCAVENGER come from its improvement on hard problems.

24 The correct solution is: target = alist; ?target-function-1 = make-alist;  ?target-function-2 = acons;

?target-function-3 = assoc
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Reduction in median problem execution times across training runs.
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Figure 31

Inspection of individual times further supports this conjecture.  Across training

runs, the solution time for the hardest problem in any of the trials dropped from 686

seconds to 93 seconds.  The reduction in the difference in times between the hardest

and easiest problems is also indicated by a reduction in the standard deviation from

the mean execution time across target problems.  The untrained version had a

standard deviation in execution times of 69 for the training problems; this reduced

to 11 after training.

This also holds for the test sets.  Here the length of time for the hardest problem

dropped from 685 seconds to 137 after training.  Standard deviation dropped from 48

seconds to 19 seconds.
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Distribution of solution times on training set before training.
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Figures 32 and 33 illustrate this effect of narrowing the range of solution times.

Figure 32 shows the distribution of solution times for the set of training problems

on an untrained version of the algorithm.  The value scale is logarithmic.  Figure 33

shows the distribution of solution times for the same problem set after training.
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Distribution of solution times on training set after training.
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SCAVENGER's ability to improve performance on hard problems is explained

partially by the fact that hard problems tend to have a larger number of target

methods.  Such problems are more likely to match nodes deep in the hierarchy,

since there are more methods to choose from in matching the indices.

4.2.3 Fluctuations during learning

SCAVENGER learns incrementally, improving its performance over a succession of

trials.  Like many such algorithms, SCAVENGER's performance can fluctuate in the

early stages of learning.  Figure 34 shows a situation in which the algorithm's

performance actually got worse before it improved.  This case reflects data from a

smaller source base and fewer target problems which exacerbated the early

fluctuations.
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 The reason for this is that early versions of the index hierarchy may be excessively

influenced by a few training problems, and cause the algorithm to be mislead.  Note

that SCAVENGER does recover on succeeding trials.

4.2.4 Properties of the hierarchy

SCAVENGER produces wide, shallow hierarchies.  The shallowness follows from the

fact that each level adds one method of a target problem to its parent; the maximum

depth of the hierarchy can be no greater than the maximum number of target

methods in any training problem.  Examination of a typical index hierarchy reveals

further details about its structure.  A typical hierarchy was produced by 5 runs on a

training set of 57 problems.  SCAVENGER stopped learning after the fourth run.  The

resulting index hierarchy (which appears in Appendix 3 in its entirety) had the

properties shown in table 3.  Note that the average number of sources indexed at a

node grows with the depth of the node in the hierarchy.  This is inevitable given the

combinatorics of analogical inference.
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Level # nodes #leaves sources/node

0 1 0 0
1 16 8 3.25
2 19 14 5.95
3 6 5 7
4 1 1 24

Distribution of sources among nodes of a typical index

Table 3

Further insights into SCAVENGER's performance can be gained by examining the

number of problem solutions found at different levels of the index.  In the 6 test sets

discussed in this section, there were a total of 347 training problems and 325 test

problems.  The table 4 shows the distribution of solutions among the nodes that led

to them.

Level Final run of training set Test set

0 32 53
1 127 109
2 144 146
3 38 17
4 3 0

Solutions found at each level of the index

Table 4

One surprising observation is that 32 of the training problems were not solved

until SCAVENGER failed back to the root node.  This is surprising since these are

problems the algorithm has already seen 4 times.  Because these problems did not

match any other index nodes; it follows that SCAVENGER must not have created

index nodes for them in the first place.  This reflects the inherent conservatism of

the information-theoretic learning heuristic: it does not form an index node unless

it infers that this will give it some benefits.  There are two reasons SCAVENGER

would not form an index node from a target problem: either the problem

incorporated enough constraints through numbers and types of arguments that it

matched few sources (i.e., it was an easy problem), or the set of matching sources was
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large but had identical descriptions so SCAVENGER was unable to make any

distinctions among them.  The overall strong performance of the algorithm suggests

that the former explanation is the most likely.

The table also reveals much about SCAVENGER's ability to generalize learned

knowledge to the test sets.  53 test problems failed to match any indices.  This is to be

expected, since the algorithm was not trained on these problems.  For the same

reason, the fact that few test problems were solved from matches at levels 3 and 4

seems reasonable.  It is interesting to note that almost as many test problems were

solved at levels 1 and 2 as in the training set.  My explanation for this is as follows.

One of the questions SCAVENGER raised was whether there would be enough

recurring patterns of target problems to support the learning of generally useful

categories of sources.  While it seems unlikely that complex patterns involving

many functions would recur across many targets, there should be smaller

combinations of target methods that occur together frequently as components  of

many target problems.  For example,  it seems reasonable that methods that add

items to a collection (push, enqueue, etc.) would frequently combine with methods that

remove them (pop, dequeue, etc.).  Such combinations should form a "kernel" shared

by many target problems.

Inspection of the index hierarchy in appendix 3 reveals a number of such

strongly coupled pairs occurring between levels 1 and 2.  These include such

pairings as:

Methods that get a property value and methods that modify a property

value.

Methods that add to a collection and methods that remove from a

collection.

Methods that add to a collection and methods that combine (sum)

collections.

Methods that create a new object and those that retrieve a component of

its structure.
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These pairings are the "natural" sort of things that we might expect in examples

intended to illustrate the behavior of a class.  It is worth noting that SCAVENGER

would pick these pairings out of the "noise" of the other methods appearing with

them in target problems.

Another worthwhile observation concerns the number of target problems solved

on matches with leaf nodes rather than internal nodes.  After training, a total of 220

out of 325 training problems and 139 out of 374 test problems were solved on

matches with leaf nodes.  This suggests that once SCAVENGER found a set of target

methods that appeared together frequently, it resisted any tendency to over-

specialize these indices.  This helps keep the hierarchy to a manageable size.

4.2.5 Effectiveness of SCAVENGER's heuristics

SCAVENGER generates all matches between target problems and indices in the

hierarchy, including matches with both internal and leaf nodes.  It then ranks all of

these matches and tries them in order until it either finds a satisfactory

interpretation of the target or runs out of matches.  This is necessary, since failure of

a given match to solve a problem does not mean it is not solvable, only that a

particular class of analogies failed to solve it.  The primary ranking heuristic

evaluates matches according to their depth in the hierarchy.  Where it has matched

more than one node at the same level, SCAVENGER uses additional heuristics to

select among these alternatives.  Chapter 3 described the heuristics used in this

problem domain in more detail.

Out of the total of 325 training problems in the 6 tests, the trained version of

SCAVENGER solved 175 of them on analogies that resulted from the first node match

tested.  On the test set, 126 out of 347 problems were solved on the first match.  This

suggests that the combination of SCAVENGER' S learning algorithm and heuristic

selection methods was effective in moving quickly to the appropriate solution.

It is interesting to ask whether this is due to the heuristics, or to SCAVENGER's

learning algorithm.  In order to test this, I compared the performance of the full

SCAVENGER algorithm to a version that had its heuristics disabled.  The non-

heuristic version continued to favor analogies formed deep in the hierarchy, but did
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not apply any additional heuristics.  It simply tried analogies in the order they were

produced.  Figure 35 shows the performance of both versions of the algorithm across

the same training and test sets.  It is interesting to note that although the heuristic

version performed better when the algorithm was partly trained, training

eliminated any advantage provided by the heuristic rankings; in fact, the non-

heuristic version is slightly faster, owing to the complexity of the algorithm's

heuristic evaluation.
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Examination of the two version's performance on the test set gives similar

results.  It is interesting to note that the non-heuristic version outperformed the

heuristic version on the initial test.
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With heuristics Without heuristics

Initial test 20 17
Final test 12 11

Performance times (in seconds) on the test problems

Table 5

These findings are among the more surprising lessons of this research.  One

interpretation might suggest that the specific heuristics I have tested were not

particularly effective.  However, an alternative interpretation holds that

SCAVENGER's learning algorithm is more important to the algorithm's performance

than the heuristic ranking of candidate analogies.  This idea, that an effective

learning algorithm may have a greater influence on the performance than

sophisticated search heuristics, might suggest a re-evaluation of the methodologies

used in building knowledge-based systems.

4.2.6 Failure performance

If SCAVENGER fails to solve a problem with a match deep in the hierarchy, it will fail

back to successively higher nodes until it either finds an answer or reaches the root.

When it fails back to the root it implements an exhaustive search of the source base.

In this fashion, SCAVENGER is sure to find an interpretation if one exists.  This

process, however, adds to the cost of search.

On evaluating each node match, SCAVENGER constructs all completions to the

partial analogy produced in the match.  There is a problem in that completions of

the partial analogies produced by internal nodes will include analogies already gen-

erated by that node's descendents.  SCAVENGER avoids testing duplicate analogies

twice by keeping a list of all interpretations25  of the target problem that it has tested.

When completing the partial analogy produced by a node match, SCAVENGER

25 As discussed in chapter 3, an interpretation is a high level description of a class of similar

analogies.  An interpretation is simply an assignment of argument types and semantic

description to the methods in the target problems.
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matches the completions against this list, and eliminates any that match.  While

this keeps it from testing the same analogy twice, it does add overhead to the search.

Empirical results show that SCAVENGER generates a significant number of

duplicate analogies.  On the tests performed in this section, the trained algorithm

produced an average of 11.01 analogies per problem26  on the training set, where 9.36

of these were unique.  It generated nearly 2 duplicates per problem.  On the test set,

SCAVENGER produced 21.37 analogies per target problem, of which 16.58 were

unique.27

One way to estimate the impact of this problem on SCAVENGER's performance is

to give an unsolvable problem to both the trained and untrained versions of the

algorithm.  The trained version should take longer to exhaust the space, since it

must pay the overhead of "failing back" through the hierarchy, whereas the

untrained version will simply do an exhaustive search with no repetitions.

In performing this test, I created 7 problems that could not be solved with the

existing source base.  I did this by selecting 7 test problems, and changing the values

of one or more of their results.  I did not change the types of any arguments or

results.  The test took a baseline measure of the time it took SCAVENGER to fail on

these problems by running them on an untrained version of the system.  It then

trained the program over 4 runs of a training set of 56 solvable problems, and

repeated the failure test.  The performance of the different programs on the 7

unsolvable problems is described in table 6:

Untrained version Trained version

Ave execution time 12 sec 37 sec
Total analogies generated 239 542
Unique analogies generated 239 239

The effect of learning on the SCAVENGER's failure performance

Table 6

26 Only 4.47 of these  were actually tested.
27 And 10.68 were tested.
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As this table indicates, the cost of failing back through the entire hierarchy is

extremely expensive: more than triple the time for the untrained version.  As the

table also indicates, much of this comes from the problem of duplicate analogies.

Unfortunately, I could find no way to fix this problem: SCAVENGER must generate

the duplicates before it can detect and eliminate them.
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4.3 Scaling in SCAVENGER

As the previous section demonstrates, SCAVENGER's learning algorithm has

demonstrated its ability to improve performance after training on a number of

target problems.  An important question concerns SCAVENGER's ability to scale as the

source library grows.  I investigated the algorithm's scaling behavior by dividing the

source library and test problems into a number of test units.  A test unit consists of a

single class, all of that class's methods and all of the target problems having

methods of that class as their solution.  I then measured SCAVENGER's performance

on increasing numbers of test units.  This evaluation followed the following

procedure:

1. Randomly re-order the set of all test units.

2. For COUNT = 1 to the total number of test units, do:

3. Load the classes and methods for the first COUNT test units into the source

base.

4. Initialize the index to a single root.  Set learning to nil.  Divide the

problems from all test units into separate, randomly selected and re-

ordered training and test sets.

5. Run both test and training problems on the untrained algorithm to

establish baseline performance.

6 Turn on learning, and train the algorithm 4 times on the training set.

7. Turn learning off, and re-run the training and test problem sets.

Figure 36 shows the results of this test, averaged over 6 trials to reduce the effect

of ordering on the results.  The top line reflects the exhaustive execution times

averaged over both test and training sets; I did this to reduce variations caused by

the small size of test sets in the early stages of the test.

The results of this test are encouraging, if not fully conclusive28 .  The top line

shows the increases in average solution times for exhaustive search as the source

base grows: it indicates the rapid growth one would expect for this type of problem.

28 See chapter 5 for a more conclusive test of SCAVENGER's scaling abilities.
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The bottom line shows the times for solving problems from the training set on the

trained algorithm.  It is remarkably flat, and also resists the fluctuations that have

effected the other cases; this is encouraging.  Unfortunately, due to variations in

times, it is difficult to interpret the behavior of the test set on the trained algorithm

(the middle line).  The reason for these fluctuations is the distortion of the averages

caused by hard problems in the test set.

Increase in average solution times as source base grows

Number of methods in source base.
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Figure 36

However, the good performance on the training problems does provide a

positive answer to one question concerning the algorithm.  SCAVENGER is such a

complex program, that there was some concern as to whether the complexity of its

execution would overwhelm any gains it made in pruning the problem space.

These times clearly suggest that this is not the case, so long as SCAVENGER recognizes

the target problem.  If SCAVENGER recognizes the target problem, it performs very

well, even as the size of the source base grows.  If it fails to recognize the target

problem, its performance can exceed that of exhaustive search.
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4.4 Comparing SCAVENGER with source oriented clustering methods

As discussed in chapter 2, most retrieval algorithms for analogical and case-based

reasoning construct indices by comparing sources to find those properties that form

high-quality taxonomies.  As a rule, they do not pay attention to the reasoner's

experience in solving target problems.  The justification for this is a desire to

optimize retrieval across all targets, not just those the algorithm has seen.  While

this is a desirable goal, it may not be possible in realistically complex, ambiguous

domains.  My comparison of SCAVENGER and other approaches focuses on this issue

of source centered vs. target centered indexing.

The major difficulty in performing this comparison is that most source-oriented

retrieval mechanisms differ from SCAVENGER on two main points:

1. They rely on highly biased source description languages such as feature

vectors (lists of values for single-valued attributes).  SCAVENGER, in

contrast, uses more complex relational information in the form of

complete method descriptions, at each node.

2. They assume a fixed retrieval vocabulary, a list of the properties that can

be used to construct indices.  Learning selects the most discriminating

properties from among this fixed set.  In contrast, SCAVENGER adjusts

its retrieval vocabulary as it encounters new target problems.

Modifying the interpretation problem to fit these requirements would simplify it

excessively and reduce the validity of the comparison.  Instead, I have chosen to

write a clustering algorithm that captures the important features of source-oriented

retrieval mechanisms, but that fits the problem representation used in SCAVENGER.

This algorithm takes a top down clustering approach to building a hierarchical

index.  It is closest in spirit to UNIMEM (Lebowitz 1980;  Lebowitz 1986;  Lebowitz

1990), which was discussed in chapter 2, and has been patterned loosely after that

algorithm.
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4.4.1 Design of the comparison algorithm

The primary design constraint on the comparison system was to build an index

hierarchy that could be searched using the current SCAVENGER algorithm.  The

comparison algorithm builds an index in a top-down fashion: each new child node

specializes its parent by adding the information that further partitions the set of

sources indexed by the parent.

A major problem in building this comparison program was to decide how to

select the properties to use in constructing each child index.  In the absence of a pre-

defined retrieval vocabulary, the algorithm must bound the set of possibilities itself.

SCAVENGER choose node specializing patterns from the source methods used in

solving a target problem: it used the target problem to bound the set of possibilities it

must consider.  In contrast, the comparison algorithm takes a class-oriented

approach, selecting node specializers from the methods of a given class.  The

algorithm builds the hierarchy incrementally, adding one class at a time according to

the following algorithm:

1. Repeat for each class to be added to the hierarchy:

2. Let CLASS = the current source class.

3. Search the hierarchy, finding all index nodes that match some subset of

the methods of CLASS.

4. For each matching node, add the matching methods of CLASS to the

indexed sources.  Also, add CLASS to the list of classes stored under that

node.

5. From among the matched nodes, select those that were deepest in the

hierarchy.  Consider these nodes for specialization.

6. For each node to be specialized, do:

7. Retrieve all classes that have source methods stored under the parent

index.  Call these CLASS-LIST.

8. Consider each method of CLASS in turn.  Let the current method =

METHOD.  For each value of METHOD, partition CLASS-LIST into those that
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have methods with signatures and definitions that match METHOD under

some analogical mapping, and those that do not.

9.  Evaluate each such partition using the information-theoretic

evaluation function described in chapter 3.

10. Determine the information gain of the method giving the best

partition.  For each method of CLASS having the same rating, create a

new child index representing its pattern.  Store it and all other matching

sources under the new child index.

Note that in specializing an index, step 10 will create a separate child for each

favorably ranked method of the current class.  I chose to do this instead of placing all

these methods together in a single child index to avoid over-specialization.

4.4.2 Evaluating the comparison algorithm

The hierarchies constructed by the comparison algorithm vary greatly depending

upon the order with which classes are inserted into the hierarchy.  In order to

reduce such effects, I ran the comparison algorithm 6 times, with a different order of

insertion each time.  Because target problems played no role in forming the indices,

I tested each version against all 112 target problems.  I compared this with a trained

version of SCAVENGER's performance on the previously unseen test problems.  I also

included data on an algorithm that solved all 112 problems exhaustively, i.e., using

no index hierarchy.  Table 7 summarizes these results.

Exhaustive Comparison Trained
Search Algorithm SCAVENGER

Time per problem (seconds) 21 21 11
Tests per problem 24 15 11

Solution times for SCAVENGER and the comparison algorithm

Table 7

These results were surprising, since I had expected that the comparison al-

gorithm would run at least as well as SCAVENGER.  UNIMEM has been widely tested,

and is recognized to be an effective algorithm; the comparison algorithm is close

enough to it that it should have performed effectively.  It is also interesting to note
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that the comparison algorithm appeared much better when its performance is

measured in terms of analogies tested per problem.  These results make more sense

if we compare the graphs produced by SCAVENGER and the comparison algorithm.

The comparison algorithm produced a larger hierarchy than SCAVENGER.  The

table 8 shows the number of nodes at each level, averaged across all trials for both

algorithms.

Comparison Trained
Algorithm SCAVENGER

Nodes at level 0 1 1
Nodes at level 1 18.6 15.2
Nodes at level 2 43.6 19.6
Nodes at level 3 48.6 7
Nodes at level 4 21.6 0.6

Profile of the index hierarchies for SCAVENGER and the comparison algorithm

Table 8

The impact of these different graph sizes is evident in a comparison of the

number of analogies generated by both algorithms (table 9).

Exhaustive Comparison Trained
Search Algorithm SCAVENGER

Analogies per problem 47 48 11
Distinct analogies 47 27 9

Distinct analogies generated by SCAVENGER and the comparison algorithm

Table 9

The problem with the comparison version is that its graph is so large that it

essentially guides the reasoner to consider all syntactically allowable analogies for

each target.  SCAVENGER's smaller hierarchy prunes away many syntactically

allowable analogies on the basis of their failure to appear in previously seen targets.

SCAVENGER builds its hierarchy in an effort to generalize from the target problems it

has seen, while the comparison version, since it cannot access this information,

must attempt to optimize retrieval over the entire space of possible targets.
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Examination of the comparison algorithm's hierarchies casts additional light on

this distinction.  Figure 37.a shows a pattern that frequently occurs in indices

produced by the comparison algorithm.  This pattern would occur if step 10 of the

algorithm found that source-pattern-1 and source-pattern-2 gave equally desirable

partitions to the source base and made them sister nodes.  Subsequent class

insertions could further specialize these nodes to produce the pattern of 37.a.  The

problem with this formation is that matches with either leaf would match the other,

leading to duplicate analogies.  Although SCAVENGER eliminates duplicate analogies

before testing, this adds to the time overhead, and accounts for the fact that the

comparison algorithm did better on tests performed then on execution times.

source-pattern-1 source-pattern-2

source-pattern-1source-pattern-2

source-pattern-1

source-pattern-2

source-pattern-1
source-pattern-2

a b c

Alternative index hierarchies

Figure 37

Eliminating one of the branches eliminates the duplicate analogy problem, but

retrieves a fundamentally different set of analogies.  The pattern in 37.b prevents

targets that do not match source-pattern-1 from finding a match with source-pattern-2.

Essentially, it says that source-pattern-2 should only be considered in conjunction with

source-pattern-1.  Item c of the figure is another solution.  Changing the retrieval

algorithm so that nodes can store multiple patterns and allowing the algorithm to

match target methods with the largest subset(s) of them would reduce the duplicate

analogy problem.  However, comparing b and c illustrates another difference

between SCAVENGER and the comparison algorithm.  SCAVENGER will frequently

produce index structures like 37.b.  This enables it to represent the constraint that

one source method only be considered in conjunction with another.  This is a much

stronger restriction on search, and I believe it accounts for much of the difference

between SCAVENGER and the comparison algorithm.  Target problems are a logical
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source of such information, since they describe patterns of method interaction in

actual use.  I cannot think of a way of inferring this type of constraint from an

examination of source classes and methods only.

4.4.3 Target oriented indexing and the interpretation problem

A deeper understanding of the differences between the two approaches requires

further examination of the interpretation problem itself.  In a sense, I stacked the

deck against the comparison version by prohibiting it from using a pre-defined

retrieval vocabulary.  If I had specified a short list of features that could have been

applied to all source methods, and also required that each target method be described

in the same terms, a retrieval method like UNIMEM or COBWEB would probably work

better than SCAVENGER.

The problem SCAVENGER solves is harder than those solved by many clustering

algorithms or source retrieval mechanisms.  Many aspects of the problem, such as

the allowance of analogies that re-order arguments, contribute greatly to its

complexity.  The target transcripts provide very little information, aside from the

types of a few arguments, that can be used to select appropriate sources.  By explicitly

disallowing a priori, static retrieval vocabularies, I further handicapped the source-

centered approach.  An important question is whether these restrictions are realistic.

I believe they are.  Of the many assumptions made in traditional source retrieval

systems, the assumption of a fixed, initially known retrieval vocabulary seems to be

the most unrealistic.  Intelligent programs should be able to cope with unspecified,

unbounded, changing retrieval vocabularies.  They should be able to handle under-

specified problems in a reasonable way.  SCAVENGER attempts to address these issues.

However, without some sort of bias, such problems would clearly be intractable.

Instead of relying upon a fixed retrieval vocabulary, SCAVENGER uses the

assumption that target problems will include enough recurring patterns to justify

the target centered approach.  It assumes that the space of target problems it will

actually encounter is vastly smaller and contains more uniformities than the space

of syntactically allowable target problems.  In many domains, this is a reasonable

assumption.
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 I believe that many realistic problems support this assumption.  The problem of

interpreting tutorial examples is clearly such a domain.  It may be that one of the

criteria humans use to create good examples is to combine elements that somehow

"belong" together.  Similarly, many diagnostic domains are characterized by patterns

of co-occurring symptoms.  Perhaps the existence of such uniformities in scientific

problems is what Einstein was referring to when he commented that the surprising

thing about the universe is that it is comprehensible.

It is also possible that a learner may actually project such patterns upon problems

in the absence of sufficient indications to the contrary.  One of the surprising things

about SCAVENGER was its ability to find analogies that ran a source transcript

correctly, but differed from my intended solution.  Because target problems were so

under-constrained, SCAVENGER had a great latitude in interpreting them.  Where

there is little order evident in a problem domain, an intelligent agent must create its

own order.  This ability is one of SCAVENGER's more unique properties, and is

wholly consistent with the interaction theory of metaphor.

4.5 Conclusion

These evaluations have provided a number of insights into the the interactionist

approach to metaphor and the three major conjectures derived from it (see section

1.3).  This most strongly supported of the conjectures is the utility of empirical

memory management.  In order to be effective, empirical memory management

must be able to find a sufficient number of recurring patterns in target problems,

and represent them at a high enough level of generality.

These tests have shown that SCAVENGER not only learns well on repeated trials

with the same problems, but acquires knowledge that generalizes well to new

instances.  The use of ID3's information-theoretic evaluation function to select

index specializers does a good job of selecting patterns that are effective in

discriminating sources and prevents the hierarchy from growing excessively.  The

algorithm scales well, with retrieval times remaining relatively flat as the size of the

source base grows.
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In comparing SCAVENGER's empirical memory management strategy to a more

traditional, source-oriented approach, SCAVENGER significantly outperformed the

comparison version.  One reason SCAVENGER outperformed the traditional

approach is that this problem provides little information for matching targets with

sources.  Since most traditional retrieval mechanisms rely upon an adequate

retrieval vocabulary, this handicapped the comparison version.  SCAVENGER does

not require such a vocabulary; consequently, it may be useful in problem domains

where little information is available about targets.

Another reason SCAVENGER outperformed the comparison version is that it is

actually solving a different problem:  traditional approaches try to optimize retrieval

across all possible target patterns; SCAVENGER only tries to improve performance on

patterns that are similar to those it has seen.  This difference is a major source of

SCAVENGER's strength.  In many applications, such as the interpretation of tutorial

examples, it is not necessary to cover all possible problems: most syntactically legal

problems never occur in practice.  In domains where the set of actually occurring

problems is much smaller than the set of all possible problem instances, SCAVENGER

should outperform techniques that strive to optimize performance across all

possibilities.  However, the penalty SCAVENGER must pay for this gain is a very poor

performance on novel problem instances: if a problem does not match an index in

SCAVENGER's hierarchy, the cost of solving the problem can be worse than a simple

exhaustive search.

These tests also tended to support the effectiveness of assumption-based

retrieval, although not as strongly.  Inspection of the index hierarchy showed that

many paths through the hierarchy could be discriminated by types and numbers of

arguments alone, reducing the need for assumption based retrieval.  The problem

domain discussed in the next chapter provides a much more demanding test of this

conjecture.

The third major conjecture of this dissertation argued that heuristics for

measuring similarity should evaluate analogies in the context of target problems,

often relying on more complex evaluations of the analogical inference's effects on

the overall structure of the target problem.  This conjecture was not strongly sup-

ported by the data.  Although SCAVENGER's heuristics played an important role in
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improving the performance of the untrained algorithm, they actually slowed the

performance of the fully trained system slightly.  This suggests that the power of

SCAVENGER's learning algorithm is much more important than the sophistication of

its heuristic evaluations.
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5

Evaluating SCAVENGER: Diagnosis of Procedural Bugs

                                                                                                                                                                      

The imagination loses vitality as it ceases to adhere to what is real.

Wallace Stevens
The Noble Rider and the Sound of Words

SCAVENGER is a general analogical reasoner: it can be applied to any problem that

takes the form of interpreting observations by finding similarities with existing

knowledge.  Diagnosis is particularly amenable to SCAVENGER's approach: we can

view it as a process of interpreting symptoms to arrive at their underlying cause.

The domain I have chosen for this series of tests is that of diagnosing bugs in

children's subtraction skills.  This problem was first examined by (Brown and

Burton 1978;  Brown and VanLehn 1980; Burton 1982; VanLehn 1990).  Briefly, their

work explores the idea that most errors children make in arithmetic result from

defective but consistently applied procedures.  Teachers can identify these faulty

procedures and use these diagnoses to correct failures.  For example, assume a

student performs the erroneous subtraction:

634
-     468

276

This error could be produced by a bug of borrowing when necessary but forgetting to

decrement the digit borrowed from.  Brown and VanLehn (1980) have described a

large number of such procedural bugs, and demonstrated their ability to predict

children's performance in simple arithmetic.

This problem domain has a particularly good fit to SCAVENGER's representations.

The skill being debugged is procedural in nature: since LISP transcripts are sequences

of interacting procedures, they are an ideal representation for procedural knowledge.
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The tests29  discussed in this chapter address three primary goals: The first is to

further corroborate the results of chapter 4.  The second goal is to provide a more

demanding test of assumption-based retrieval.  As will become evident, this domain

allows SCAVENGER little opportunity to discriminate sources based on the numbers

and types of arguments.  Effective source selection must rely upon the ability of

assumption-based retrieval to project relevant interpretations on target problems.

Finally, this domain tests SCAVENGER's performance on realistic problems.  Most of

the tests described in this chapter were performed on data taken from tests

performed on human subjects by VanLehn (1990).  This provides valuable insights

into an essential question raised by this research: if SCAVENGER is to perform

effectively, problem instances must exhibit frequently recurring patterns of analogy;

do such patterns occur with sufficient regularity in real domains?

5.1 Representing Target Problems and Analogical Sources

5.1.1 Representing diagnostic problems

The most straightforward way to describe SCAVENGER's representation and diagnosis

of buggy subtraction problems is through an example of its diagnosis of the

subtraction bug that appeared on the previous page.  I have written a function, find-

bug, that translates subtraction problems into a format suitable to SCAVENGER.

Evaluating the LISP form

(find-bug 634 468 276)

breaks the subtraction down into a series of unknown operations on successive pairs

of digits.  The target transcript for this problem is:

(setq w (make-working-memory)) ->  (instance working-memory 1)
(#:G873 4 8 w) ->  ?
(#:G874 3 6 w) ->  ?
(#:G875 6 4 w) ->  ?
(show-result w) -> 276

In this transcript, w is bound to an instance of the class working-memory.  Working-

memory contains two slots: a borrow  slot that contains the value (0 or 1 in correct

29The tests described in this chapter were performed on a Macintosh 6100 Power PC.
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subtraction) that is to be decremented from the next column.  The result  slot

accumulates the column results as the transcripts proceed; show-result returns the

result value accumulated in working memory (providing the borrow  slot = 0). The

target method names, #G873, #G874 and #G875, are dummy names30  for each opera-

tion.  In interpreting the target, SCAVENGER maps these onto the appropriate sources.

Those mappings form its diagnosis.

The source library consists of a number of methods for subtracting digits.  Each of

these takes two digits and an instance of working-memory, and returns an integer.  For

example, normal-subtract performs correct column subtraction, and has the definition:

1. If the borrow slot of working memory = 1, then decrement the top digit, and set borrow to

0.

2. If the top digit is less than the bottom digit, then add 10 to the top digit and set the borrow

slot of working-memory to 1.

3. Subtract the digits, and concatenate their difference to the result stored in working

memory.

The source base includes such error methods as borrow-no-decrement, smallest-from-

largest, always-borrow, etc.  For example, borrow-no-decrement has the definition

1. If the top digit is less than the bottom digit, then add 10 to the top digit (ignore the borrow

slot of working memory).

2. Subtract the digits, and add the difference to the result in working memory.

The heuristics for ranking competing analogies minimize the total number of

sources used and maximize the number of targets mapped to normal-subtract.  These

heuristics are simpler than those used in the domain of chapter 4.  Because of that

chapter's results on the relative unimportance of heuristic ranking of analogies in

SCAVENGER, I chose to use simple heuristics and to pay more attention to the be-

havior of SCAVENGER's learning algorithm in these tests.

30 Produced by the LISP function gensym.
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Solving this transcript produces the mapping:

   Method map.
     #:G874 -----> NORMAL-SUBTRACT
          arg-0 --> arg-0; arg-1 --> arg-1; arg-2 --> arg-2
     #:G873 -----> BORROW-NO-DECREMENT
          arg-0 --> arg-0; arg-1 --> arg-1; arg-2 --> arg-2
     #:G875 -----> BORROW-NO-DECREMENT
          arg-0 --> arg-0; arg-1 --> arg-1; arg-2 --> arg-2

This reproduces the behavior seen in the target problem:

(SETQ W (MAKE-WORKING-MEMORY)) -> #<WORKING-MEMORY #x2E8079>
(NORMAL-SUBTRACT 4 8 W) ->  6
(BORROW-NO-DECREMENT 3 6 W) ->  7
(BORROW-NO-DECREMENT 6 4 W) -> 2
(GET-RESULT W) ->  276

This solution diagnosed the problem as being produced by a combination of normal-

subtract and borrow-no-decrement. The remainder of this section discusses the

representation of sources and problems in more detail.

5.1.2 Selecting and representing buggy subtraction operators

Brown and VanLehn (1980) list 97 bugs that they used to diagnose problems in

children's arithmetic.  I have implemented 66 of these procedures as source

operations (67 including the normal subtraction operator).  Combinations of these

67 procedures capture an additional 23 of Brown and VanLehn's bugs.  The reason I

did not implement all 97 bugs concerns contextual issues in the application of

operators.  In implementing buggy source operators, I encountered three types of

bugs:

1. Bugs that ignore context.  These do not pay attention to their position in

the problem or interactions with other operations (except those that

could be expressed using working-memory's borrow  variable).  Borrow-no-

decrement is an example of this type of bug.  These fit directly into the

representational scheme I have chosen, and I have implemented all 66

of them.  Adding normal-subtract to these gives a total of 67 source

operators.
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2. Bugs that are combinations of bugs of type 1 with their usage con-

strained by context.  For example, (Brown and VanLehn 1980) define

borrow-only-once as "When there are several borrowers, the student

decrements only the first borrower."  (page 423)  Borrow-only-once may also

be thought of as an appropriate combination of normal-subtract and

borrrow-no-decrement operations.   I have not implemented these bugs

directly, since SCAVENGER discovers them as combinations of type 1

bugs.  An additional 23 of Brown and VanLehn's bugs were of this type,

and SCAVENGER will find them in this indirect fashion.

3. Bugs that were inherently dependent on context in ways that could not

easily be expressed as combinations of type 1 operators.  These are bugs

that made extensive use of contextual information, and could not be

described under the representation I have chosen.  An example of such

a bug is borrow-decrementing-to-by-extras, which Brown and VanLehn

define: "When there is a borrow across 0's, the student does not add 10

to the column he is doing but instead adds 10 minus the number of 0's

borrowed across." (page 420)  Rather than changing the representation

in drastic, ad hoc ways (such as adding specialized counters or flags to

working memory), I have chosen to ignore these bugs.  There were

only 8 of them, and they occur infrequently.

Appendix 5 provides a complete list of the operators used in these tests.

In the tests of this chapter, I have not allowed SCAVENGER to re-order arguments

in forming analogies.  Allowing the re-ordering of operators in this domain is not

necessary, and in many cases, such as subtract-smaller-from-larger would be confusing.

Extensions to LISP's type hierarchy

In representing source signatures, I extended the Common LISP type system to

include the types shown in Figure 38.  This extension adds a type, digit, which

includes blank and the numbers 0 through 9.  Digit has specializations of blank and non-

blank-digit, and non-blank-digit is further specialized with a type for each digit.  This is a

reasonable extension to the LISP type system that gives SCAVENGER the ability to
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make some initial distinctions between target problems.  For example, the operator

diff-0-n=0 describes the bug of assuming that 0 minus any other digit is always 0.

Specifying its signature as:

diff-0-n=0: digit-0 x digit x working-memory -> digit-0

prevents SCAVENGER from trying to apply this operator in situations where it

obviously does not fit.

It is worth noting that the the ability of argument types to distinguish source

operators is fairly limited, even with these extensions to the type system.  All

sources have the same number of arguments, and the majority of them take any

two digits as arguments.

digit

non-blank-digitblank

digit-0 digit-1 digit-2 digit-3 digit-4 digit-5 digit-6 digit-7 digit-8 digit-9

integer

Adding digit types to the LISP type hierarchy

Figure 38

Describing operators

The language SCAVENGER uses to describe source operators exerts a strong influence

on its behavior.  Assumption-based retrieval and the related learning algorithm use

both argument types and high-level descriptions of function behavior to categorize

similar sources.  Because the description of sources is such a potentially strong
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source of bias, I have made an effort to describe sources in terms that might

reasonably be thought of as natural.  The tests of chapter 4, relied on the sorts of

descriptions people commonly give LISP functions.  This problem domain supports

a more systematic approach based on a cognitive model of the subtraction process.

 Brown and Burton (1978) model children's knowledge of arithmetic as a

procedural network.  This is a network of interacting procedures which, when

performing properly, performs correct arithmetic.  Bugs originate out of failures in

one or more components of this network.  I have based my bug descriptions on a

simplified version of this network.

When viewed at a high level, the procedural network for subtraction consists of

the steps:

1. Select a column of digits.

2. If the top digit is smaller than the bottom digit, borrow from the column to the left and add 10 to
the top digit.

3. Decrement the top digit of the column to the left by 1.

4. Perform the subtraction.

Although Brown et al further decompose these steps, this higher level of

description allowed SCAVENGER to represent general categories of bugs.  Based on

this model, I have defined the following source descriptors:

1. normal-op.  This is used only once, to describe normal subtraction.

2. transpose-error.  An error in step 1, in which the student re-orders the

operands to subtract the top digit from the bottom digit.

3. borrow-error.  This describes any failure in step 2, such as failing to borrow,

or always borrowing.

4. decrement-error. This describes any failure in step 3, such as forgetting to

decrement.

5. subtract-error. A failure of step 4 such as assuming that n-0 = 0.
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6. add-error. A failure of step 4 in which the student adds instead of

subtracting.

I have described source methods using these predicates.  Although most sources

have been described using a single descriptor, some require combinations of them,

giving a total of 11 different bug descriptions.  Appendix 5 lists the operators used in

this work and their descriptions.

5.1.3 Interesting properties of this problem and its representation

The most important aspect of this problem is the fact that the problem instances

used to test SCAVENGER occurred naturally: they are the results produced by human

children on subtraction tests and reflect no biases on my part.

Second, the problem domain is extremely complex.  Given a three digit

subtraction problem and 67 sources, there are a maximum of 673 or 300,763 cases that

must be considered.  While the number of cases is not unusually large for realistic

problems, the overhead involved in evaluating the original transcript under each

hypothesis makes their evaluation slow.

It is important to note that the problem representation differs from the approach

taken in Brown et. al.'s original work.  I have done this in an effort specifically to

challenge SCAVENGER's ability to find meaningful patterns of source interactions.

As an example, consider the definition of the bug smaller-from-larger, a bug that always

subtracts the smaller number from the larger instead of borrowing.  My definition of

the buggy operator is:

1. If the top digit is smaller than the bottom digit, then subtract the top digit from the bottom.

2. Otherwise, the operator cannot be applied.

Because the operator cannot be applied if the top digit is larger than the bottom,

most problems that involve a smaller-from-larger bug require that it be used in

conjunction with the normal-subtract operator.  SCAVENGER must find this

combination of bugs through search.  An alternative implementation of smaller-from-

larger that performed normal subtraction if the top digit was larger than the bottom,
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would have eliminated the need for such combinations of sources.  If I had

represented all bugs in this fashion, SCAVENGER's task would have been much

easier:  Instead of trying all combinations of buggy operators, it simply could have

tried each operator in turn.  However, I specifically wanted to test SCAVENGER's

ability to find meaningful combinations of operations.

5.1.4 An overview of tests performed

The first of the tests compares SCAVENGER' S results to human diagnoses.  This

considers such questions as how often SCAVENGER finds the same results as humans,

the reasons for its differences and the effect of learning on SCAVENGER's

interpretations.

The next set of tests are similar to those performed in sections 4.2 and 4.3.  They

test SCAVENGER's learning ability, and the scalability of the algorithm as problem

sizes grow.  I have not repeated the comparison with the source centered retrieval

mechanism described in section 4.4.  The source-centered comparison algorithm

inserts items into its index on a class by class basis.  Since the sources in this test only

have one class, working-memory, the comparison algorithm could not be applied to this

domain.

5.2 Identifying Bugs

5.2.1 Identifying exemplars of different bugs

An interesting aspect of this domain is its inherent ambiguity.  For example, the

buggy result:

   62

- 37

  35

could be explained either by the bug smaller-from-larger, or by borrow-no-decrement.  How

did SCAVENGER resolve this ambiguity?  The first test examines SCAVENGER's

performance in diagnosing problems that were specifically intended to exemplify

specific bugs.  Brown and VanLehn (1980) list all the bugs included in their theory;
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each bug description includes an example.  Since these examples were intended to

illustrate specific bugs, I assume that the authors made an effort to make them as

unambiguous as possible.

This test used 46 examples of buggy operators taken from Brown and VanLehn

(1980).  Each example had been used to illustrate a different bug.  An untrained

version of SCAVENGER placed these 46 bugs in only 24 different diagnostic categories,

agreeing with the human description 22 times.  Note that given the available in-

formation, SCAVENGER's diagnoses are just as "correct" as the human's: they

successfully reproduced the example behavior.  This result indicates the extent of

the domain's ambiguity: even problems intended to exemplify specific bugs allowed

multiple interpretations.

The reason SCAVENGER found fewer interpretations than the humans is

straightforward.  The untrained version of the algorithm tried all the sources in the

same order each time, quitting when it found a solution.  This imposed a strong, if

arbitrary, bias on the interpretation SCAVENGER gave to ambiguous bugs.31

The effect of learning on SCAVENGER's results is more interesting.  After being

trained on three repetitions of the problem instances, SCAVENGER placed them in

only 20 different diagnoses.  It found fewer different bugs after learning than before.

The explanation is straightforward: after learning, the index hierarchy reordered the

search space, producing a different set of interpretations.

These results are particularly interesting when we consider them in light of the

interaction theory of metaphor.  The interaction theory holds that the interpretation

of both targets and sources evolves through their mutual participation in a series of

metaphors (or analogies).  SCAVENGER exhibits this type of behavior.  After

appearing in a number of comparisons (the training runs), the interpretations of

many of the targets changed; after these same runs, SCAVENGER's interpretation of

the relative importance of sources also changed.  Although I did not program this

31 If the algorithm had been allowed to continue search, it would have eventually produced a

set of all interpretations that fit: this would have included the human interpretation.
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behavior into the algorithm in any deliberate sense, its emergence further indicates

the extent to which SCAVENGER is an instantiation of the interaction theory.

5.2.2 Diagnosing bugs in individual students

Burton (1982) describes the approach taken to handling this ambiguity in the

original DEBUGGY program.  Given an individual child's results on a set of

subtraction problems, DEBUGGY constructs its diagnoses by:

1. Finding all bugs that correctly reproduce at least one of the student's

wrong answers.

2. Eliminating bugs that are subsumed by other bugs.  Bug X is subsumed

by bug Y  if Y  will reproduce all problems diagnosed by X, and also

diagnoses additional problems.

3. Produce candidate composite diagnoses.  Since an individual may have

several bugs in combination, DEBUGGY must potentially consider all

subsets of the original set of bugs.  Since this is frequently intractable,

DEBUGGY only considers composite diagnoses containing no more than

4 individual bugs.

4. Select the diagnosis that best predicts the student's performance.

DEBUGGY preferred diagnoses that avoided predicting wrong answers

for problems the student answered correctly.

SCAVENGER implements a much simpler approach to interpretation than

described above, treating each problem independently.  The only record of multiple

diagnoses it retains is implicit in the structure of its index.32   It is, however, worth

considering the possibility that the interactions of individual problems retained in

the index structure might lead to a tendency to converge on diagnoses that match

those produced by the DEBUGGY algorithm.  Recall, for example, the tendency of

32 It would be possible to apply SCAVENGER to step 1 of the above algorithm, simply by

allowing it to find all interpretations of a each problem, although this simply uses

SCAVENGER as an exhaustive search engine.
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SCAVENGER's learning algorithm to narrow its selections as it learns (discussed in

section 5.2.1).

I performed a simple test of this question, running SCAVENGER on the test results

of 16 different students.  SCAVENGER's examination of each student's results began

with an untrained version of the algorithm.  SCAVENGER made two passes through

the student's results, using its learning algorithm to construct an index that

summarized each student's bugs.

However, SCAVENGER showed no real tendency to converge to diagnoses that

matched DEBUGGY's.  On the 16 students, SCAVENGER came to agree with DEBUGGY in

only 4 cases.  Inspection of these cases suggests that the agreement was largely

coincidental: all cases of agreement involved the bug, smaller-from-larger.  This probably

resulted from a combination of this bug's position in the source base and its

frequent occurrence in student's performance.

This result is hardly surprising, given the sophistication of DEBUGGY's heuristic

approach and the fact that SCAVENGER's source selection and learning algorithms

make no explicit effort to find diagnoses that cover sets of target problems.

5.3 Learning and scaling

The results discussed in the preceding section underscore the ambiguity inherent in

the problem domain, and the simplicity of SCAVENGER's inference techniques.  This

section focuses on the ability of SCAVENGER's learning and retrieval algorithms to

improve its performance over larger problem sets.  Given a population of problems

taken from many different children, can SCAVENGER find enough regularities to

significantly improve its performance?

One of the limitations of the problem domain discussed in chapter 4 was the fact

that I had constructed the test problems myself.  Although I attempted to avoid

biases that might unfairly favor SCAVENGER, it is probably impossible to guarantee

the success of such an effort.  One of the attractive aspects of this problem domain is

the availability of test data that was generated independently of this research.  This

data has provided a challenging test of SCAVENGER's ability to find regularities in

large collections of data.
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5.3.1 Selecting a set of test problems

The problems used in these tests were taken from VanLehn's (1990) "Southbay"

study of children's subtraction skills.  Prof. VanLehn generously provided me with

the "raw" data from this study: this consisted of a group of children's results on 6

different subtraction tests, and included the test results for each child, a description

of that child's diagnosed bugs, and other information on each child's age and class.

In producing test problems for the evaluations performed in this chapter, I

processed this data in the following fashion:

1. Extract the erroneous results from all test results, along with the

diagnoses given them in VanLehn's original work.  This produced

approximately 7500 erroneous subtraction problems.

2. Eliminate problems involving 4 digit numbers from the list of

problems.  As will become evident, the combinatorics involved in

trying combinations of operators led to very long solution times for the

untrained algorithm; I have eliminated them in an effort to keep test

times manageable.

3. Randomly select 500 problems from this final set.  I then added the

correct solutions to all 76 problems to this set.

This produced a set of 576 test problems.  I chose my test problems at random from

this set.  With the exception of eliminating problems involving four digit numbers,

all acts of selecting and ordering test problems were random.

5.3.2 Learning

The learning test randomly chose 161 problems from the problem set described in

section 5.3.1, and divided them into separate test and training sets.  The training set

contained 75 problems, and the test set 86 problems.  Figure 39 shows SCAVENGER's

improvements across repeated trials of the training data.  Although it is difficult to

read exact times from the figure, the trained version took an average of 11 seconds

per problem.  The longest solution time for a training problem was 30.5 seconds, the
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fastest time was just over 2 seconds.  Here, the improvements are even greater than

those of chapter 4.

This is due to the extreme difficulty of the problem for the untrained algorithm.

SCAVENGER could eliminate few buggy operators using such information as

numbers and types of arguments.  All operators took two digits and an instance of

working memory as arguments.  Although some operators could only apply if one

of the digits equaled a specific value (usually 0 or 1), SCAVENGER still had to consider

a large number of buggy operators. The untrained version of the algorithm wound

up generating an average of 3096 combinations of operators per problem;  after

training, SCAVENGER generated only an average of 78 hypotheses to solve a problem.
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Figure 39

In applying SCAVENGER to the test set (problems that the learning algorithm had

not seen), the untrained version took about 1500 seconds per problem; this
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improved to to an average of 76 seconds per problem after training on the separate

training set.  Although this is a strong result, it is worth noting that it was skewed by

the presence of a small number of problems that SCAVENGER did not recognize, and,

consequently, took a very long time (2220, 1556, 593, 569, 568 and 116 seconds).  If

these were eliminated, the average time on the test problems drops to under 11

seconds.  Figure 40 illustrates the variation in execution times of the trained

algorithm on the test problems.
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These results further support the effectiveness of SCAVENGER's learning and

retrieval algorithms.  Its performance also indicates the effectiveness of the

generalizations provided by the description language used to index functions and

the existence of a sufficient number of recurring problems in the population of

children.

The extent to which recurring problems influenced the outcome is characterized

in table 10.  This summarizes the interpretations SCAVENGER found for the
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combined training and test sets.  Although SCAVENGER was certainly helped by

recurring bugs, there were enough infrequently occurring bugs to indicate that the

algorithm's abilities to generalize also contributed to its performance.
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Bug Occu
rrenc

es

1. SMALLER-FROM-LARGER 69

2. NORMAL-SUBTRACT 15

3. BORROW-NO-DECREMENT 12

4. N-N=1-AFTER-BORROW 6

5. N-N=9-PLUS-DECREMENT 4

6. DECREMENT-1-TO-11 4

7. ZERO-AFTER-BORROW 4

8. ADD-BORROW-CARRY-SUB 3

9. BORROW-ACCUMULATE-DECREMENT 3

10. DECREMENT-ON-BORROW 3

11. BORROW-INTO-ONE=10 3

12. BORROW-FROM-ZERO 3

13. DIFF-N-0=0 3

14. ZERO-INSTEAD-OF-BORROW 3

15. BORROW-INTO-0-IS-9 3

16. DONT-DECREMENT-ZERO 2

17. SMALLER-FROM-LARGER & SUB-ONE-OVER-BLANK 2

18. ADD-INSTEAD-OF-SUB 2

19. ADD-NO-CARRY-INSTEAD-OF-SUB 2

20. BORROW-ACROSS-ZERO-TOUCHED-0-N=N 2

21. ALWAYS-BORROW &  N-N=9-PLUS-DECREMENT 2

22. DIFF-N-N=N 2

23. BORROW-FROM-BOTTOM 1

24. BORROW-FROM-BOTTOM & BORROW-

ACCUMULATE-DEC

1

25. BORROW-FROM-BOTTOM & ZERO-AFTER-BORROW 1

26. ADD-BORROW-CARRY-SUB & BORROW-

ACCUMULATE-DEC

1

27. BORROW-UNIT-DIFF & SUBTRACT-ACCUMULATED-

DECS

1
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28. BORROW-UNIT-DIFF 1

29. SMALLER-FROM-LARGER & ALWAYS-BORROW 1

30. BORROW-TREAT-ONE-AS-0 1

31. TREAT-TOP-ZERO-AS-10 1

Summary of SCAVENGER's Diagnoses

Table 10

5.3.3 Scalability

The algorithm also continues to perform well on scaling tests.  To examine its

scaling behavior, I divided the source base into 10 sets of 6 or 7 buggy operators each;

each of these "test units" included approximately 16 problems that could be solved

with those operators.  Repeated trials "grew" the source base by adding test sets.

Each test randomly divided the problems into separate test and training sets and

repeated the learning test described in 5.3.1.  Figure 41 shows SCAVENGER's run times

on this test.
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The performance of the untrained algorithm shows the exponential rise in

complexity we would expect of exhaustive search.  However, the performance of the

trained algorithm remains nearly flat when applied to problems it has trained on.

The trained algorithm also remains efficient on the test problems, although the

results do show more fluctuation.  As in chapter 4, the reason for this greater

variation is the existence of small numbers of novel problems that caused the

algorithm to perform badly.

5.4  Conclusion

This chapter provides further insights into the performance of SCAVENGER.

SCAVENGER's application to a diagnostic domain supports the general applicability of

the algorithm.
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The most important result of this evaluation was a further corroboration of the

effectiveness of SCAVENGER's learning algorithm.  Because all sources had the same

number of arguments, and because type information failed to distinguish sources

adequately, the untrained algorithm had to manage large numbers of sources.

SCAVENGER improved its performance by two orders of magnitude over the training

runs.

Another goal of these tests was to further explore the effectiveness of as-

sumption-based retrieval.  Because information about types and numbers of

arguments did little to distinguish sources, most of the improvements in

performance came through assumption-based retrieval's process of projecting

familiar patterns of analogy on source data and confirming them through

experiment.  The success of this approach on this domain results from two factors:

the first is the structure of the domain itself.  Without sufficient recurring patterns

of analogy in the problem domain, assumption-based retrieval could do little to

improve performance.  One of the important results of this series of tests was an

illustration of the extent to which such recurring patterns can be found in realistic

problem domains.  The second source of the effectiveness of assumption-based

retrieval is the ability of the learning algorithm to construct effective hierarchies.

Although SCAVENGER uses a variation of a well tested learning algorithm, ID3, I did

modify it in several critical ways.  Perhaps the most significant of these was in the

use of local information obtained from a single problem to generate specializations

to the index hierarchy.  This contrasts with ID3's use of  a global analysis of entire

sets of test problems to construct its decision trees.  It is not obvious that the learning

algorithm would continue to function well if restricted to such limited training

information.  The results strongly suggest that it does.

It is interesting to contrast this approach with the more analytic approach taken

by diagnostic expert systems.  SCAVENGER does not reason about problems; it simply

looks for viable patterns of failure, generalizing and remembering these patterns.

This "analogize test and remember" approach could be useful in domains where

models of the failure behavior of individual system components are known, but

rules for reasoning about the interactions of these component failures may be

unknown. For instance if we are debugging devices where failure of one component
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could cause or interact with failures of another component, SCAVENGER could be a

powerful tool for discovering and recording recurring patterns of interacting

failures.

These tests corroborated the effectiveness of the interactionist retrieval

mechanism on a difficult, "real-world" problem.  Applying SCAVENGER to data

produced by human children, demonstrates both its generality and its effectiveness

on a difficult, naturally occurring problem.
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6

Evaluating SCAVENGER: Reasoning About Simulations

                                                                                                                                                                      

All our reasonings concerning matter of fact are founded on a species of analogy which
leads us to expect from any cause the same events which we have observed to result from
similar causes.

 David Hume
An Inquiry Concerning Human Understanding

There is a close relationship between the interpretation problem as formulated in

SCAVENGER and simulation based reasoning.  In testing hypothesized analogies,

SCAVENGER executes sequences of CLOS methods.  Object oriented languages, like

CLOS, are a powerful tool for implementing simulations.  SCAVENGER makes

inferences and tests them by constructing and running CLOS programs; simulation-

based problem solvers implement a similar process.  This chapter briefly describes

the way in which SCAVENGER can be applied to reasoning about qualitative

simulations.  Unlike the preceding problem domains, this work does not attempt to

evaluate SCAVENGER's performance with large source bases and problem sets, but

rather serves as a simple proof of concept and a further demonstration of the

algorithm's flexibility.

WC

WD
Container C Container D

Fluid path P1

A simple flow system

Figure 42

Qualitative Process (QP) theory is a tool for describing and reasoning about the

qualitative behavior of physical systems (Forbus 1984).  It allows us to represent

relationships between quantities, the way in which quantities change in a system,

and the interactions of physical processes.  An example, taken from (Forbus 1984)

illustrates its capabilities.  Figure 42 shows a system of two water tanks (C and D)
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connected at their bases by a pipe (P1).  WC and WD represent the water levels in each

tank at a given time.  Given this situation, humans will recognize that water will

flow from left to right through the pipe until the levels in the containers are equal.

We infer this by reasoning qualitatively about the system, not by applying

quantitative laws.  QP theory is a formal model of this type of qualitative reasoning.

QP theory represents qualitative relationships between quantities.  A quantity

consists of two parts: an amount and a derivative; each of these, in turn, has an

amount and a sign.  Rather than doing arithmetic with amounts and derivatives,

QP theory reasons qualitatively about their relationships.  In figure 42:

amount(WC) > amount(WD)

When water flows through P1, the derivative of the quantity WC takes on a value of

-1, indicating that the level is falling.   Similarly, the derivative of WD is +1.

Derivatives can take on values of +1, 0 or -1, indicating the direction of a change, but

not its amount.  Reasoning about the flow process leads to the conclusion that

eventually,

amount(WC) = amount(WD)

and all the derivatives become 0.

Quantities are related by functional relationships that show how changes in one

quantity influence the amount of another.  In the example of figure 42, a change of

water level causes a corresponding change in the amount of water in a container.  If

w is the water in a container, this relationship is written:

level(w) ∝Q+ amount-of(w)

if the relationship is inverse, use the operator: ∝Q- .

Process is a central notion in QP theory.  A process changes properties of objects

over time.  In figure 42, the flow process changes the water levels in the tanks.  A

process consists of:
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1. The individual objects it applies to.

2. Preconditions and quantity conditions that must be met if it is to apply.

3. Functional relations between properties of objects imposed by the

process.

4. Influences the process exerts on object properties.

An influence can be either positive (I+), in which increases in one quantity cause

another to increase, or negative (I-), in which one quantity causes another to

decrease.

In the current example, the flow process is described (Forbus 1984):

process fluid-flow

Individuals:

src a contained liquid

dst a contained liquid

path a fluid path, fluid-connected(src, dst, path)

Preconditions:

Aligned(path)

Quantity conditions:

amount(pressure(src)) > amount(pressure(dst))

Relation:

flow-rate ∝Q+  (amount(pressure(src)) - amount(pressure(dst))

Influences:

I+ (amount-of(dst), amount(flow-rate)

I- (amount-of(src), amount(flow-rate)

The influences state that the amount of the flow rate causes the amount of water in

dst to increase, and causes the amount of water in src to decrease.

This has been a brief overview of an extremely general theory, but it is enough to

illustrate SCAVENGER's ability to reason with QP simulations.  There are a number of
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reasoning problems that can be solved using QP theory.  One of these is determining

the activity of processes in a situation.  (Forbus 1984) describes this problem as:

A process instance has a status of Active or Inactive according to whether or not the
particular process it represents is acting between its individuals.  By determining
whether or not the preconditions and quantity conditions are true, a status can be
assigned to each process instance for a situation (page 111).

Forbus describes how this problem can be solved by reasoning about preconditions

of target processes.  SCAVENGER offers another approach to this problem: that of

forming and testing analogies, and using learning to improve performance across

trials.  The remainder of this chapter illustrates it on the example of figure 42.

In the SCAVENGER solution, objects are represented as instances of CLOS objects.  A

quantity is an object having slots for amount and derivative.  A tank has the definition:

tank:
height
level
open-p
inlet
outlet

The height slot indicates the height of the tank, and the level slot the water level.  These

slots are bound to instances of quantity.  Open-p is set to t  or nil, telling whether the tank

is open or not.  Inlet and outlet  are pointers to fluid-paths that allow water to flow in and

out of the tank.

A fluid-path has the slots:

fluid-path
source
destination
flow-rate

source and destination are pointers to instances of tank, and flow-rate is set to 0 if there is

no flow, 1 if water flows from source to destination, and -1 if it flows in the other

direction.  In addition to these objects, I have defined methods for accessing their

components, and for connecting them into a structure such as described in the

figure.
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The flow process is a method that takes two instances of tank and an instance of

fluid-path.  It checks the preconditions and quantity conditions specified in the flow

specification; if they are met, it applies the associated influences to its arguments.

These set the flow-rate to 1, the derivative of the level of the source to -1 and the

derivative of the destination level to +1.  In addition, I have defined a no-flow process,

which does nothing.  To make the example more interesting, I have also defined

evaporation and no-evaporation processes.

In addition, I have used the QP-descriptions to define the method descriptions

and construct index patterns.  For example, the definition of the flow method is:

signature: tank tank fluid-path -> nil
result: result
definition: ((I+ level arg-0) (I- level arg-1))

Note the use of influences in the method definition.

Assume that we are given the derivatives of the water levels in the two

containers of figure 42 (WC is going down, and WD is going up), and want to

determine the processes that could account for that observation.  We can give

SCAVENGER the following description of the system in question:

(setq t1 (make-tank 10 8)) -> ?
(setq t2 (make-tank 12 6)) -> ?
(setq p1 (make-fluid-path)) -> ?

(connect t1 p1) -> ?
(connect p1 t2) -> ?

(?process1 t1 t2 p1) -> ?
(?process2 t1) -> ?
(?process3 t2) -> ?

(get-derivative (get-level t1)) -> -1
(get-derivative (get-level t2)) -> 1

In this problem, all the method names match those in the source base, and will be

recognized except ?process1, ?process2 and ?process3.  Running the algorithm finds an

explanation of the observed changes in terms of active and inactive processes:

(SETQ T1 (MAKE-TANK 10 8)) -> #<TANK #x3E1B09>
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(SETQ T2 (MAKE-TANK 12 6)) ->  #<TANK #x3E1B69>
(SETQ P1 (MAKE-FLUID-PATH)) -> #<FLUID-PATH #x3E1B89>
(CONNECT T1 P1) -> NIL
(CONNECT P1 T2) -> NIL
(FLOW T1 T2 P1) -> NIL
(NO-EVAPORATION T1) -> NIL
(NO-EVAPORATION T2) -> NIL
(GET-DERIVATIVE (GET-LEVEL T1)) ->  -1
(GET-DERIVATIVE (GET-LEVEL T2)) -> 1

In this example, SCAVENGER has determined that the flow process is active, and the

evaporation process is inactive.  This approach could be expanded to include more

objects and processes.

SCAVENGER and reasoning about QP descriptions

This example suggests a fruitful interaction between SCAVENGER and QP theory.

The ease of implementing the problem attests to SCAVENGER's generality.  The ease

of adapting QP theory's description language as a language for describing SCAVENGER

sources further supports the conjecture that "natural" description languages can be

an effective basis for SCAVENGER indices.

In turn, SCAVENGER has the promise of making contributions to QP theory.

Although QP theory's ontology is simple and elegant, the reasoning processes

involved in solving problems is quite complex.  This conflicts with the theory's goal

of representing

the commonsense knowledge people have about the physical world (Forbus 1984) (page
87).

For example, although I could easily imagine children having intuitions about such

concepts as qualitative derivatives (water levels go up and down) or relations (as the

water level goes down, there is less water in the glass), I find it hard to imagine how

they can reason about preconditions in the fashion specified in the theory.  Yet

children and other relative novices do understand the qualitative behaviors of

physical systems.  How can they do this without performing complex inferences?

SCAVENGER performs a very primitive form of inference.  At first, it simply tries

random alternatives until something works.  As it gains experience, it remembers
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things that have worked and comes to prefer these explanations if they can be made

to fit the target.  As it learns, it acquires a set of explanation templates that it uses

with a superficial understanding of their meaning.  Like a novice, it will even try to

apply its favorite explanations in areas where an expert would realize they clearly do

not fit.  Also, like a novice, SCAVENGER becomes very good at solving familiar

problems, but often lacks an expert's ability to generalize its knowledge to novel

situations.  Coupling SCAVENGER with QP theory offers a tool for studying the role of

"reasoning impoverished" but "learning intensive" strategies in problem solving.
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7

Summary of Results and Future Research

                                                                                                                                                                      

The pattern which connects is a metapattern.  It is a pattern of patterns.

Gregory Bateson

Mind and Nature

This dissertation was motivated by a belief that metaphor and analogy are essential

processes underlying intelligent behavior.  Important aspects of these processes

include the ability to reason about similarity, the transfer of semantic knowledge

between analogical sources and targets, and the role of systematic patterns of

relationships in selecting and developing analogies.  The interaction theory of

metaphor provided a framework for my computational investigation of these

phenomena.  This dissertation explored the ramifications of the interaction theory

for selecting an analogical source that would support viable, productive analogies.

This conclusion summarizes the results of this research.  It begins by sum-

marizing the empirical findings, and re-examines the dissertation's original

conjectures.  Finally, it suggests areas of continued research.

7.1 Empirical evaluation of SCAVENGER

I evaluated SCAVENGER's performance across three domains.  The first two, the

interpretation of tutorial examples of LISP function behavior and the diagnosis of

bugs in children's subtraction skills, were the basis of the quantitative evaluations of

the algorithm's behavior.  The third domain, reasoning about physical simulations,

was included as a demonstration of the algorithm's flexibility.  SCAVENGER exhibited

a number of interesting quantitative properties:

1. It learns well.  On the test of chapter 4, the algorithm not only

demonstrated a 70% speedup on training problems, but also transferred

enough of its learned knowledge to a distinct test set to effect a 50%
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speedup.  On the problem of diagnosing bugs in children's subtraction,

the algorithm demonstrated a two order of magnitude speedup on both

test and training sets.

2. It does not overspecialize its index hierarchy.  By using a variation of the

information-theoretic evaluation function from ID3 to determine

when to specialize nodes, SCAVENGER only adds a new node if this will

give it some benefit.  This prevents the algorithm from acquiring

overly specialized indices.

3. It scales well.  Although the final word on SCAVENGER's scaling ability

will require much larger source bases, my results suggest that it scales

reasonably well.  In particular, its execution times seem to be relatively

insensitive to the size of the source base, so long as it is solving a

problem that is similar to one it has already seen.  However, if it

encounters a novel problem, i.e. a problem that has no syntactic

similarity to those it has seen before, it can perform badly.

4. It is insensitive to the language used to represent index nodes.  This is

suggested by the fact that it achieved good learning effects with a very

simple node description language.  During its development, I

experimented with different description languages; so long as the

language seemed reasonable and gave some support to the formation

of general categories of methods, the algorithm performed well.  This

contrasts with the reliance most case-based retrieval mechanisms place

on strongly biased retrieval vocabularies.

5. It compares favorably with more traditional retrieval methods.  In

comparing it to traditional, clustering based retrieval methods,

SCAVENGER out-performed the source centered approach on the

problem of interpreting tutorial examples of LISP function behavior.

7.2 SCAVENGER and the interaction theory

Chapter 1 presented three conjectures about source retrieval for analogical

reasoning.  These conjectures are reflected in the major aspects of SCAVENGER's
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architecture.  The insights the SCAVENGER experiments afforded into these con-

jectures are:

7.2.1 Assumption-based retrieval.

Assumption-based retrieval was an effort to integrate analogical inference with the

process of selecting an appropriate source.  Given a problem that provides

insufficient knowledge to select an appropriate source, assumption-based retrieval

allows an algorithm to transfer properties of candidate sources to the target on a

non-monotonic basis, evaluate those inferences heuristically, and use these results

to select among candidate sources.

My results have shown that while this approach requires more processing than

traditional methods, it can, when coupled with the use of an appropriate learning

algorithm to maintain a hierarchical index, result in significant improvements over

either exhaustive analogize-and-test approaches or traditional retrieval

mechanisms.  After training, SCAVENGER exhibited significant speedups on both

training and test sets.  The algorithm seems to scale well, so long as target problems

bear some similarity to problems it has already seen, although trained versions can

perform poorly on completely novel problems.

Chapter 4 demonstrated that SCAVENGER outperformed a more traditional

memory organization strategy, although the under-constrained nature of the test

problem handicapped the comparison algorithm.  In both test domains, little in-

formation is initially given about target problems: Target transcripts only indicate

the number of arguments in target methods and the types of some of their

arguments.  As is often the case with under-constrained problems, a non-

monotonic, "assume and evaluate" strategy may be the only reasonable approach;

SCAVENGER has demonstrated that this can work effectively for analog source

retrieval.

Although the limitations SCAVENGER's problem formulation placed on retrieval

differed from the assumptions usually made by analogical or case-based reasoners,

They are both realistic and necessary if we are trying to understand general

mechanisms of analogical inference.  Many potential applications of analogical and
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case-based reasoning involve such under-constrained problems.  These include

work in theory formation and discovery, diagnosis and debugging in areas where

available knowledge is limited or hard to elicit, and efforts to use analogy to model

aspects of human learning.  Assumption-based retrieval extends the basic

mechanisms of analogical reasoning to include such poorly defined problems.

7.2.2 The use of systematic structure to evaluate similarity

The ability to convey entire systems of relationships in a single comparison, is an

important property of analogy.  Although systematicity has been explored in the

context of analogical inference (Falkenhainer et al 1989;  Gentner 1983), it has not

been applied to the problem of selecting a relevant source.

The interpretation of LISP function behavior is an ideal test problem for

examining the role of systematic structure in source retrieval.  As I have formulated

this problem, target problems do not contain enough information about their

individual  components to support retrieval of relevant sources.  The only clues to

the interpretation of target components is the pattern of their relationships to other

aspects of the problem.  Retrieval must exploit this structure.

SCAVENGER did this in three ways:

1. Indices represent more complex patterns than is usually the case in

indexing systems.  Each index described an entire source method[s].

2. Search through the hierarchy implicitly reconstructed recurring patterns

of function interaction.  Matches with indices deeper in the tree

reflected a combination of methods in the target.

3. SCAVENGER's heuristics for ranking candidate analogies analyzed

systematic properties of the different interpretations of the target that

resulted from competing sources.

It is interesting to note that as SCAVENGER learned, the heuristic ranking of

analogies proved less important to the algorithm's performance than the learning

algorithm.  This idea that "smart learning" is more important than "smart search"
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is an interesting challenge to much of the conventional wisdom in AI problem

solving.

7.2.3 Empirical memory management

Most retrieval systems for analogical and case-based reasoning build indices by

selecting properties from a pre-defined retrieval vocabulary.  As defined in this

work, the problem of interpreting observations prevented the definition of such

vocabularies.  A central conjecture of this dissertation asserts that information that

proved useful in solving target problems is an effective source of index patterns.

Although the interaction theory of metaphor is often cited in the literature on

analogical reasoning, one of its central assertions, that metaphors transfer

knowledge from the target to the source, as well as from the source to the target, is

often ignored in models of analogical reasoning.  In using target problems to restrict

the set of properties that can be used in constructing indices, SCAVENGER

implements a form of knowledge transfer back to the source.  Specifically, it

transfers knowledge of the relevance of different source properties from the target

context back to the source.

The success of this approach depends upon the likelihood that such patterns of

relevance will repeat across the space of target problems.  Although there is no

logical reason that such recurring patterns should exist, there are a number of

domains where this assumption may be justified.  The problem of interpreting

tutorial examples, is such a domain.  Diagnosis is another area where this

assumption should prove valid.  Many symptoms frequently co-occur with other

symptoms; SCAVENGER can find and exploit such patterns.  The failure of certain

components may induce failures in other components of a system; SCAVENGER can

discover these interactions.

My evaluations supported this conjecture.  It is also interesting to note that while

SCAVENGER worked well on problems that were similar to those it had seen, it could

perform worse than exhaustive search on completely novel problems.  Statistics on

the number of problem solutions that resulted from nodes deeper in the index
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hierarchy further supported the existence of a sufficient number of recurring

patterns of target problems to counteract the added overhead of failure.

In adapting ID3's information-theoretic evaluation strategies to the problem of

specializing SCAVENGER's indices, I changed several of the contextual assumptions

made in the original ID3 research.  In basing its analysis on the solution of a single

target problem, SCAVENGER applied its analysis to a critically limited set of data, and

also risked the possibility that contextual constraints found in one target might not

generalize to other target problems.  Empirical results suggest that information-

theoretic evaluation strategies are robust enough to overcome both of these

limitations.

7.2.4 Conclusion

The SCAVENGER experiments have shown that for appropriate problems, and given

an appropriate representation language, the primary conjectures of this dissertation

hold.  Work in applying SCAVENGER to different domains suggest that the

algorithm's underlying assumptions will generalize to a variety of applications.

However, the algorithm and its applications deserve and require further study; the

next section discusses areas for future research.

7.3 Future Directions

An obvious direction for future work must involve applying SCAVENGER to a

variety of new problem domains.  The evaluation of chapters 4 and 5 covered two

domains in depth: the interpretation of tutorial examples, and the diagnosis of

procedural failures.  Chapter 6 provided a simple proof of concept showing how

SCAVENGER could be applied to simulation based reasoning.  Further application of

SCAVENGER to realistic problems is an obvious extension of this research.  Such

problem areas include:

7.3.1 Case-based reasoning

Case-based reasoning is the area in which SCAVENGER can have the most direct

impact.  Most case-based reasoners rely on such simplifying assumptions as the

existence of a fixed, unchanging retrieval vocabulary.  They assume that target
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problems will include sufficient information selected from this vocabulary to select

appropriate sources, and that sources can be adequately discriminated under terms

taken from this vocabulary.  However, this assumption leaves most case-based

reasoners excessively reliant on biases in the selection and representation of

retrieval vocabularies.  SCAVENGER has shown that it is possible to construct

retrieval mechanisms that work well in the absence of such biases.

Another area in which SCAVENGER shows promise for contributing to CBR is the

problem of store-compute trade-offs.  Managing these trade-offs is an important

problem for case-based reasoning.  SCAVENGER manages these trade-offs and gains

flexibility by performing a type of reconstructive transfer.  SCAVENGER does not store

entire instances of successful problem solutions; instead, it stores generalized de-

scriptions of key patterns of those solutions in its index structure.  It then re-

constructs source solutions for each target using these general patterns as a guide.

This strategy reduces the storage needed for maintaining large collections of source

solutions, and speeds up retrieval through a hierarchical index.   The price paid for

this gain is a greater time spent in retrieving and reconstructing source solutions.

7.3.2  SCAVENGER and the application of analogies to scientific discovery

Scientific discovery is another promising application area.  Hesse (1966) has shown

the importance of analogical reasoning in human science.  Scientific and common-

sense theories of the world may be seen as conforming to a relatively small number

of abstract patterns of theoretical explanation.  For example, physical theories often

take the form of equilibrium laws, mechanical explanations, field effects or flow

theories.  In social interactions, a general pattern of “exchanging things of equal

value” governs relationships as diverse as buying and selling, employment, contract

law and politics.  This is not surprising if we assume that new theories are formed

through analogies with existing knowledge.  Further work may use SCAVENGER to

test this conjecture.

7.3.3 Cognitive models of analogy

Perhaps the most exciting area of continued research would be to evaluate

SCAVENGER as a model of analogical reasoning in humans.  Because the interaction
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view of metaphor is a cognitive/philosophical theory, SCAVENGER already has roots

in this area.  Additional cognitive science influences on its design include Gick and

Holyoak's work on abstraction and analogy.  In addition, much of its performance

during evaluation was suggestive of human behavior.  For example, SCAVENGER's

tendency to "lock onto" favorite solutions and possibly mis-apply them, particularly

during the early stages of learning, suggests the problem solving behavior of

novices.  The fact that SCAVENGER's performance can get worse before it gets better

has a similar human quality.  These observations suggest that it is worthy of con-

sideration as a serious model of analogy formation in humans.  I would enjoy the

opportunity to test this hypothesis, first by searching the literature on human

analogy for patterns of behavior reflected in the algorithm, and later by designing

and performing experiments with human subjects.

7.4 Conclusion

One of the primary goals of this research was to explore the mechanisms by which

metaphor supported the construction of interpretations of empirical data.  In doing

this research, I was guided by the interaction theory of metaphor, and much of this

work should be regarded as an exploration of the empirical application of that

theory.

The choice and representation of test problem reflects this concern.  Most work

in source retrieval for case-based and analogical reasoning, assumes a fixed retrieval

vocabulary in which the values of certain properties are known for all objects.

However, the interaction theory of metaphor questions these assumptions, focusing

on the view that similarity arises out of complex systems of relations, and

interactions between individual objects.  The analogical interpretation problem

addressed in the SCAVENGER experiments assume that the names and interpretation

of target terms are unknown, and must be inferred through an such a process of

interpretation.  This contrasts with more traditional reasoning systems that begin

with a collection of names for things and rules that reason with those names.

Analysis of SCAVENGER's performance suggest insights into the relationship

between perception, analogy and interpretation.  It recognizes that perception is not

a simple, deterministic, data-driven process, but a complex construction of an
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interpretation, where perceptions are as shaped by an agent's prior experience, and

current goals as by so-called "objective" reality.  Its interpretations are constrained

empirically (the requirement that it run the transcript correctly) but also depend

upon such non-empirical criteria as a preference for interpretations that closely

match those that have succeeded in the past.  SCAVENGER's interpretation of target

transcripts can vary according to its past experience.  The SCAVENGER experiments

show how analogies can effect this construction of interpretation and provide an

explicit computational model of that process.

An interesting aspect of SCAVENGER is the primitive nature of its inference

strategies.  It does not perform deductive reasoning, or traditional statistical analysis.

It begins with a trial and error process of discovery and remembers generalized

descriptions of things that work.  Recent years have seen a rise in work on inference

strategies that, while lacking such properties as soundness and completeness, seem

better suited to managing an agent's behavior in complex, changing, open worlds.

Research in artificial life, neural networks, and analogical reasoning reflect this

change of focus, and reveal the richness of such primitive inference strategies.

There is a greater recognition that deductive reasoning is not the basis of

intelligence, but is only one of its products.

Finally, it is worth re-stating that SCAVENGER uses analogies to project viable

interpretations onto otherwise under-determined sets of observations.

Philosophers, psychologists and cognitive scientists have long recognized that

intelligent agents actively construct interpretations, rather than merely manipulate

symbolically described truths about an objective world.  The interaction theory of

metaphor provides a basis for a computational theory of the processes underlying

that construction.  SCAVENGER is an instantiation of that theory.
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Appendix 1

The Class and Method Library Used in the Tests of Chapter 4

                                                                                                                                                                      

The experiments of chapter 4 used a source library consisting of the classes and

methods described in this appendix.  The classes cover a number of different

domains, including mathematics, accounting, data structures and simulation.

These areas, along with the number of classes and methods in each, are:

Domain # classes # methods

Accounting 2 13
Complex numbers 1 9
Data structures 8 55
Date arithmetic 1 13
Investments 3 9
Location using x-y co-ordinates 1 6
Object-oriented data base 1 7
Rational numbers 1 10
Strings 1 15
Thermostat-room-heater simulation 3 15

Totals 22 152

Before listing the definitions of these classes and methods, it is useful to describe the

language and conventions used in their description.

SCAVENGER's retrieval system exploits three types of knowledge about source

methods: their argument signatures, their side-effects and a high level description of

their semantics.  The signature specifies the types of arguments and results.  These

types are either classes from the source library, or built-in LISP types.

The second component of a source description is a specification of the function's

result and side-effects: this specifies which arguments are changed by the function
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action.  I have divided this into separate specifications of the result returned by the

function and "hidden" side-effects.  This specification helps distinguish methods,

and is also needed to construct the graph of function behavior that SCAVENGER uses

to rank candidate analogies.

The third component of a source description is a high level description of

function semantics; this is a collection of predicates on function arguments and

results.

For example, the upcase method for the string  class takes a string as its argument

and raises all of its characters to upper case.  The display method shows the value of a

string .  If s is bound to an instance of string , and has the value: "hello,"  these

functions have the behavior:

? (display s)
"hello"
? (display (upcase s))
"HELLO"

Upcase is specified as:

signature: string -> string

result: arg-0

side-effects: ()

description: ((modify-property arg-0))

This states that upcase takes a single string as an argument and returns a string as

result.  It returns its first argument as a result, and has the behavior of modifying a

property of that argument.

Similarly, the get-substring method, returns the portion of a string specified by its

starting and ending positions.  It has the behavior (using the value of s from the

preceding example):

? (display (get-substring 2 4 s))
"LL"

Get-substring  has the specification:
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signature: fixnum x fixnum x string -> string

result: result

side-effects: ()

description ((list-of-elements arg-2 result))

This states that the get-substring method takes three arguments, two fixnums (the LISP

name for a short integer), and a string.  It returns a different string as a result, and

has no side effects.  The result is a list of elements in argument 2.  When a function

such as get-substring, returns a new object as a result, I have adopted the convention of

labeling the returned value result .

The set-amount function for the entry class of the accounting domain illustrates the

representation of side-effects.  Set-amount takes as arguments a new amount for an

entry and an entry.  It returns the value of the new amount as a result, and changes

the entry as a side-effect.  For example, if e is bound to an instance of entry, then set-

amount would have the effect:

? (set-amount 100.00 e)
100.00
? (get-amount e)
100.00

Set-amount has the description:

signature: float x entry -> float
result: arg-0
side-effects: (arg-1)
description: ((set-property-value arg-0 arg-1))

This states that the method returns its first argument as a result, and has the side-

effect of changing its second argument.  It has the behavior of setting one of the

property values of argument 1 to argument 0.

A method-description language

The language used to specify method descriptions is important to SCAVENGER's

behavior.  It should be general enough to cover sets of similar methods, supporting

abstraction in the hierarchy, but it should be specific enough to make useful

distinctions between categories of methods.  However, optimizing such a language
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expressly to improve SCAVENGER's performance would be difficult if not impossible.

I have used the heuristic of describing methods at a general level, using terms that

would seem natural to a computer scientist.

The language I have used to describe the sources used in the tests of chapter 4 is:

(add-to-collection object-i object-j)

Adds object-i to the collection specified in object-j.

(apply-function object-i object-j)

Object-i is a function applied to object-j.

(combine object-i . . .)

Combines all its arguments into a single structure.

(copy-of object-i)

Specifies a copy of object-i.

(diff object-i object-j)

The result is the difference between objects i and j.  In addition to numeric

subtraction, I use this to describe more general forms of difference, such as set

difference.

(div  object-i object-j)

The quotient of objects i and j.

(equality-test object-i object-j)

Returns t  if object-i equals object-j, nil otherwise.

(find-on-key object-i object-j)

Retrieves elements of object-j using object-i as a key.
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(is-in-collection object-i object-j)

Object-i is a member of the collection, object-j.

(list-of-elements object-i object-j)

Object-j is a list of elements from the collection, object-i.

(modify-property object-i)

Changes a property value in object-i.  The new value is not passed in as an

argument, but is computed according to some fixed algorithm, such as

incrementing a value by 1.

(new-object object-i)

Object-i is a new object.

(ordinal-comparison object-i object-j)

The method performs an ordinal comparison of objects i and j.

(property-test object-i)

The method is a predicate testing a property of object-i.

(property-value object-i object-j)

Object-j is a property value for object-i.

(remove-from-collection object-i object-j)

Removes object-i from the collection, object-j.

(root object-i)

The result is a root of object-i.
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(set-property-value object-i object-j)

Set the value of a property of object-i to object-j.

(select-argument object-i . . . )

Selects one of a group of objects, based on some criterion such as finding the

maximum.

(structure-component object-i object-j)

Object-j is a component of the structure, object-i.

(sum object-i object-j)

The sum of objects i and j.  In addition to numeric addition, I use this to

describe more general forms of summation, such as set union and string

concatenation.

(times object-i object-j)

The product of objects i and j.  In addition to numeric multiplication, I use this

to describe additional operations such as set intersection.
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The source classes used to test SCAVENGER

The classes and methods used to test SCAVENGER, along with their descriptions, are:

1. ACCOUNTING DOMAIN get-date 

signature: entry -> dateCLASSES

account
result: result
side-effects: ()

An account allows the posting of
entries (debits and credits), the
retrieval of entries by date and the
computation of an account balance.

description: ((property-value arg-0 result))

Gets the date an entry was posted.

set-date 

signature: date x entry -> entryentry
result: arg-0

An entry is a credit or debit to an account.  It
includes an amount and a date.

side-effects: (arg-1)
description: ((set-property-value arg-0 arg-1))

Sets the posting date for an entry.Both account and entry use the date class
defined below.

make-account 

METHODS
signature: fixnum x date -> account

make-entry result: result
side-effects: ()

signature: float x date -> entry description: ((new-object result))

Creates an instance of an account, given an
account number and date the account was
opened.

result: result
side-effects: ()
description: ((new-object result))

Creates an instance of the entry class.
get-entries 

get-amount 
signature: account -> list

signature: entry -> float result: result
side-effects: ()result: result
description: ((list-of-elements arg-0 result))side-effects: ()

Lists all the entries in an account.
description: ((property-value arg-0 result))

Returns the amount of an entry.
get-balance 

set-amount 
signature: account x -> floatsignature: float x entry -> float
result: resultresult: arg-0
side-effects: ()side-effects: (arg-1)
description: ((property-value arg-0 result))description: ((set-property-value arg-0 arg-1))

Gets the balance of an account.Sets the amount of an entry.
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get-date-opened complex-number

signature: account -> date METHODS

make-complex 
result: result
side-effects: ()

signature: number x number -> complex-number
description: ((property-value arg-0 result))

Gets the date an account was opened. result: result
side-effects: ()

get-number description: ((new-object result))

Creates an instance of complex number, given
its real and imaginary values.

signature: account -> fixnum
result: result

get-real-part 
side-effects: ()
description: ((property-value arg-0 result))

Returns an account number. signature: complex-number -> number
result: result

post-entry side-effects: ()
description: ((structure-component arg-0 result)))

signature: account x float x date
get-imaginary-part result: arg-0

signature: complex-number -> number
side-effects: ()
description: ((add-to-collection (combine arg-1 arg-2)
arg-0)) result: result

side-effects: ()

Adds an entry to an account description: ((structure-component arg-0 result)))

complex-sqrt list-entries 

signature: complex-number -> complex-numbersignature: account x date
result: resultresult: result
side-effects: ()side-effects: ()
description: ((root arg-0))description: ((list-of-elements arg-0 result))

complex-+ Lists all entries to an account on a certain
date.

signature: complex-number x complex-number ->
complex-numberpurge-entries 
result: result

signature: account -> account
side-effects: ()
description: ((sum arg-0 arg-1))

result: arg-0

complex-- 
side-effects: ()
description: ((modify-property arg-0))

signature: complex-number x complex-number ->
complex-numberPurges the entries in an account.

                                                                                                  
result: result
side-effects: ()

2. COMPLEX NUMBER DOMAIN
description: ((diff arg-0 arg-1))

CLASSES
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complex-* METHODS

empty signature: complex-number x complex-number ->
complex-number

signature: data-structure -> tresult: result
result: resultside-effects: ()
side-effects: ()description: ((times arg-0 arg-1))
description: ((property-test arg-0))

complex-/ 
Determines if a data structure is empty.

signature: complex-number x complex-number ->
complex-number equal 
result: result

signature: data-structure x data-structure -> tside-effects: ()
description: ((div arg-0 arg-1)) result: result

complex-= 
side-effects: ()
description: ((equality-test arg-0 arg-1))

signature: complex-number x complex-number -> t empty 
result: result

signature: stack -> tside-effects: ()
description: ((equality-test arg-0 arg-1)) result: result

                                                                                                  side-effects: ()

3. DATA STRUCTURE DOMAIN
description: ((property-test arg-0))

equal 
CLASSES

signature: stack x stack -> t
data-structure result: result

An abstract class that defines the basic
structure of its derived classes.

side-effects: ()
description: ((equality-test arg-0 arg-1))

make-stack 

stack
signature: -> stack

bag result: result
side-effects: ()

set description: ((new-object result))

Creates an instance of stack.sorted-queue

push queue

signature: t x stack -> stackdeque
result: arg-1

A deque is a double ended queue, allowing
inserts and removals from both ends.

side-effects: ()
description: ((add-to-collection arg-0 arg-1))

alist

An alist is a lisp style association list.
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pop 
side-effects: ()
description: ((is-in-collection arg-0 arg-1))

delete signature: stack -> t

signature: t bag -> bag
result: result
side-effects: (arg-0)
description: ((remove-from-collection result arg-0)) result: arg-1

empty 
side-effects: ()
description: ((remove-from-collection arg-0 arg-1))

delete-copysignature: bag -> t

signature: t bag -> bag
result: result
side-effects: ()
description: ((property-test arg-0)) result: result

equal 
side-effects: ()
description: ((remove-from-collection arg-0 (copy-of
arg-1)))

signature: bag x bag -> t
Makes a copy of a bag, and removes an
element from the copy.

result: result
side-effects: ()
description: ((equality-test arg-0 arg-1))

count 
make-bag 

signature: bag -> fixnum
signature: -> bag result: result
result: result side-effects: ()
side-effects: () description: ((property-value result))
description: ((new-object result))

Counts the number of items in a bag.
add 

union 
signature: t bag -> bag

signature: bag x bag -> bagresult: arg-1
side-effects: () result: result
description: ((add-to-collection arg-0 arg-1)) side-effects: ()

Adds an element to a bag.
description: ((sum arg-0 arg-1))

empty 
add-copy

signature: set -> t
signature: t bag -> bag result: result
result: result side-effects: ()
side-effects: () description: ((property-test arg-0))
description: ((add-to-collection arg-0 (copy-of arg-
1))) equal 

Makes a copy of a bag, and adds an element to
it.

signature: set x set -> t
result: result

member 
side-effects: ()
description: ((equality-test arg-0 arg-1))

signature: t bag -> t
result: result
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make-set count 

signature: -> set signature: set -> fixnum
result: result result: result
side-effects: () side-effects: ()
description: ((new-object result)) description: ((property-value result))

add Counts the number of items in a set.

signature: t set -> set union 
result: arg-1

signature: set x set -> setside-effects: ()
description: ((add-to-collection arg-0 arg-1)) result: result

Adds an element to a set.
side-effects: ()
description: ((sum arg-0 arg-1))

add-copy

signature: t set -> set
result: result
side-effects: ()
description: ((add-to-collection arg-0 (copy-of arg-
1)))

Makes a copy of a set, and adds an element to
it.

member 

signature: t set -> t
result: result
side-effects: ()
description: ((is-in-collection arg-0 arg-1))

delete 

signature: t set -> set
result: arg-1
side-effects: ()
description: ((remove-from-collection arg-0 arg-1))

delete-copy

signature: t set -> set
result: result
side-effects: ()
description: ((remove-from-collection arg-0 (copy-of
arg-1)))

Makes a copy of a set, and removes an element
from the copy.
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intersection merge 

signature: set x set -> set signature: sorted-queue x sorted-queue -> sorted-
queueresult: result

side-effects: () result: result
description: ((times arg-0 arg-1)) side-effects: ()

difference 
description: ((sum arg-0 arg-1))

Merges two sorted queues, forming a third.
signature: set x set -> set

empty result: result
side-effects: ()

signature: queue -> tdescription: ((diff arg-0 arg-1))

empty 
result: result
side-effects: ()

signature: sorted-queue -> t
description: ((property-test arg-0))

equal result: result
side-effects: ()

signature: queue x queue -> tdescription: ((property-test arg-0))

equal 
result: result
side-effects: ()

signature: sorted-queue x sorted-queue -> t
description: ((equality-test arg-0 arg-1))

make-queue result: result
side-effects: ()

signature: -> queuedescription: ((equality-test arg-0 arg-1))

make-sorted-queue 
result: result
side-effects: ()

signature: -> sorted-queue
description: ((new-object result))

enqueue result: result
side-effects: ()

signature: t x queue -> queuedescription: ((new-object result))

insert 
result: arg-1
side-effects: ()

signature: t x sorted-queue -> sorted-queue
description: ((add-to-collection arg-0 arg-1))

dequeue result: arg-1
side-effects: ()

signature: queue -> tdescription: ((add-to-collection arg-0 arg-1))

f i rst 
result: result
side-effects: (arg-0)

signature: sorted-queue -> t
description: ((remove-from-collection result arg-0))

conc result: result
side-effects: (arg-0)

signature: queue x queue -> queuedescription: ((remove-from-collection result arg-0))

Removes the first element of a sorted queue
and returns it.

result: result
side-effects: ()
description: ((sum arg-0 arg-1))

Concatenates two queues into a third.
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empty dequeue-rear

signature: deque -> t signature: deque -> t
result: result result: result
side-effects: () side-effects: (arg-0)
description: ((property-test arg-0)) description: ((remove-from-collection result arg-0))

equal Inserts at the front of a deque.

signature: deque x deque -> t conc 
result: result

signature: deque x deque -> queueside-effects: ()
description: ((equality-test arg-0 arg-1)) result: result

make-deque 
side-effects: ()
description: ((sum arg-0 arg-1))

signature: -> deque Concatenates two deques into a third.
result: result

empty side-effects: ()
description: ((new-object result))

signature: alist -> t
enqueue result: result

signature: t x deque -> deque
side-effects: ()
description: ((property-test arg-0))

result: arg-0

equal side-effects: ()
description: ((add-to-collection arg-0 arg-1))

signature: alist x alist -> t
Inserts at the rear of a deque. result: result

dequeue 
side-effects: ()
description: ((equality-test arg-0 arg-1))

signature: deque -> t make-alist 
result: result

signature: -> alistside-effects: (arg-0)
description: ((remove-from-collection result arg-0)) result: result

Removes from the front of a deque.
side-effects: ()
description: ((new-object result))

enqueue-front acons 

signature: t x deque -> deque signature: t t alist -> alist
result: arg-0 result: arg-2
side-effects: () side-effects: ()
description: ((add-to-collection arg-0 arg-1)) description: ((add-to-collection (combine arg-0 arg-1)

arg-2)
Inserts at the front of a deque.

Creates a (key . datum) record from its first
two arguments, and adds it to an alist.
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assoc get-year 

signature: t alist -> cons signature: date -> fixnum
result: result result: result
side-effects: () side-effects: ()
description: ((find-on-key arg-0 arg-1)) description: ((structure-component arg-0))

Looks up a (key . datum) pair on the key. leap-year-p 

signature: date -> tdel 
result: result

signature: t alist -> cons side-effects: ()
description: ((property-test arg-0))result: arg-1

Determines if a date is a leap year.
side-effects: ()
description: ((remove-from-collection arg-0 arg-1))

Removes a (key . datum) pair, matching on
the key.

days-in-month 

signature: date -> integer

                                                                                                  result: result
side-effects: ()

4. DATE DOMAIN
description: ((property-value arg-0))

Returns the number of days in a month.CLASSES

valid-date-p date

signature: date -> tMETHODS

make-date 
result: result
side-effects: ()
description: ((property-test arg-0))

signature: integer x integer x integer -> date
Determines if a date is valid.result: result

side-effects: ()
date-= description: ((new-object result))

Creates a new date, given a valid month, day
and year.  Returns nil if date not valid.

signature: date x date -> t
result: result
side-effects: ()

get-month description: ((equality-test arg-0 arg-1))

date-<= signature: date -> fixnum

signature: date x date -> t
result: result
side-effects: ()

result: resultdescription: ((structure-component arg-0))
side-effects: ()

get-day description: ((ordinal-comparison arg-0 arg-1))

signature: date -> fixnum
result: result
side-effects: ()
description: ((structure-component arg-0))
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inc-date An investment, such as a stock, in which the
value, and hence the rate of return, can
fluctuate.signature: date -> date

result: arg-0
side-effects: ()
description: ((modify-property arg-0))

Increments a date by one day.

dec-date 

signature: date -> date
result: arg-0
side-effects: ()
description: ((modify-property arg-0))

Decrements a date by one day.

add-days 

signature: integer x date -> date
result: arg-1
side-effects: ()
description: ((sum arg-0 arg-1))

Adds a number of days to a date.

date-diff 

signature: date x date -> integer
result: result
side-effects: ()
description: ((diff arg-0 arg-1))

Computes the number of days between two
dates.

                                                                                                  

5. INVESTMENTS DOMAIN

CLASSES

investment

An abstract class defining the basic structure
of all investments.

variable-rate-investment
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fixed-rate-investment
result: result
side-effects: ()
description: ((property-value arg-0 result))

An investment, such as a certificate of
deposit, in which the value changes
according to a pre-defined rate of return.

Gets the total percentage profit (to date) on
an investment.

get-yearly-return METHODS

make-variable-rate-investment signature: variable-rate-investment -> float

signature: string x float x date -> variable-rate-
investment

result: result
side-effects: ()
description: ((property-value arg-0 result))

Gets the yearly rate of return on an
investment.

result: result
side-effects: ()
description: ((new-object result))

Creates an instance of variable-rate-
investment given its name, initial value, and
the date it was made.  Initializes current
value to the purchase price.

make-fixed-rate-investment 

signature: string x float x date x float -> fixed-rate-
investment
result: result

get-current-value side-effects: ()
description: ((new-object result))

signature: variable-rate-investment -> float
Creates an instance of fixed-rate-investment
given its name, initial value, the date it was
made, and the rate of return.

result: result
side-effects: ()
description: ((property-value arg-0 result))

set-value get-interest-rate 

signature: variable-rate-investment float date ->
variable-rate-investment

signature: fixed-rate-investment -> float
result: result

result: arg-0 side-effects: ()
side-effects: () description: ((property-value arg-0 result))
description: ((set-property-value (combine arg-1 arg-
2) arg-0)) get-value 

Sets the value of a variable-rate-investment
on a given date.

signature: fixed-rate-investment x date -> float
result: result

get-gain 
side-effects: ()
description: ((property-value arg-0 result))

Gets the value on a given date of a fixed-
rate-investment.

signature: variable-rate-investment -> float
result: result
side-effects: ()
description: ((property-value arg-0 result))

Gets the profit (to date) on an investment.

get-percentage-gain 

signature: variable-rate-investment -> float
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description: ((diff arg-0 arg-1))

                                                                                                    
6. LOCATION DOMAIN

7. OBJECT ORIENTED DATABASE
CLASSES

object-db
location

A simple object-oriented "data base,"
allowing storage and retrieval of objects
based on values of fields.  Does not archive
objects to disk, but keeps them in memory.  I
used this extensively in the SCAVENGER
implementation.

A location in a simple x-y co-ordinate system.

METHODS

make-location 

signature: number x number -> location
METHODS

result: result

make-oo-db side-effects: ()
description: ((new-object result))

signature: t list -> object-db
Creates an instance of a location given its x
and y co-ordinates.

result: result
side-effects: ()

get-x 
description: ((new-object result))

Creates an object oriented database given a
name of the type of its entries and a list of
keys.

signature: location  -> number
result: result
side-effects: ()

insert 
description: ((structure-component arg-0))

Gets the x co-ordinate value of a location.
signature: t object-db -> object-db
result: arg-1

get-y 
side-effects: ()
description: ((add-to-collection arg-0 arg-1))

signature: location  -> number Inserts a class instance into an object data
base.result: result

side-effects: ()

retrieve 
description: ((structure-component arg-0))

Gets the y co-ordinate value of a location. signature: t t object-db -> t

loc-= 
result: result
side-effects: ()

signature: location x location -> t
description: ((find-on-key arg-0 arg-1 arg-2))

Retrieves the first match on a given field
name and value.

result: result
side-effects: ()
description: ((equality-test arg-0 arg-1))

distance 

signature: location x location -> number
result: result
side-effects: ()
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retrieve-all make-rational 

signature: t t object-db -> t signature: integer x integer -> rational
result: result result: result
side-effects: () side-effects: ()
description: ((list-of-elements result arg-2)) description: ((new-object result))

Creates an instance of rational number, given
its numerator and denominator.

Retrieves all matches on a given field name
and value.

get-numerator del 

signature: rational -> integersignature: t x object-db -> t
result: resultresult: arg-1
side-effects: ()side-effects: ()
description: ((structure-component arg-0 result)))description: ((remove-from-collection arg-0 arg-1))

get-denominator Removes an object instance from a data base.

signature: rational -> integerf i l ter-db
result: result

signature: function object-db -> list side-effects: ()
description: ((structure-component arg-0 result)))result: result

rational-+ 
side-effects: ()
description: ((list-of-elements result arg-2))

signature: rational x rational -> rationalRetrieves all elements of a data base that
satisfy a given predicate. result: result

side-effects: ()

map-db 
description: ((sum arg-0 arg-1))

rational-- 
signature: function x object-db -> list

signature: rational x rational -> rational
result: result
side-effects: ()

result: resultdescription: ((apply-function arg-0 arg-1))
side-effects: ()

Applies a function to every element of an
object data base, and returns the results.

description: ((diff arg-0 arg-1))

rational-* 

                                                                                                    signature: rational x rational -> rational

8. RATIONAL NUMBER DOMAIN
result: result
side-effects: ()

CLASSES
description: ((times arg-0 arg-1))

rational-/ 
rational

signature: rational x rational -> rational
A lisp-style rational number, consisting of a
numerator and a denominator.

result: result
side-effects: ()

METHODS
description: ((div arg-0 arg-1))
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rational-= signature: string x string-> t

signature: rational x rational -> t
result: result
side-effects: ()
description: ((equality-test arg-0 arg-1))result: result

string-/= 
side-effects: ()
description: ((equality-test arg-0 arg-1))

rational-<= signature: string x string-> t

signature: rational x rational -> t
result: result
side-effects: ()
description: ((equality-test arg-0 arg-1))result: result

string-<=
side-effects: ()
description: ((ordinal-comparison arg-0 arg-1))

rational-max signature: string x string -> t

signature: rational x rational -> rational
result: result
side-effects: ()
description: ((ordinal-comparison arg-0 arg-1))result: result

side-effects: ()
description: ((select-argument arg-0 arg-1))

                                                                                                    

9.  STRING DOMAIN

CLASSES

string

METHODS

make-string 

signature: character* -> string
result: result
side-effects: ()
description: ((new-object result))

Creates an instance of a string class given a
lisp-style string. E.g.: "abcd".

display 

signature: string -> character*
result: result
side-effects: ()
description: ((property-value arg-0 result))

Displays the value of a string instance in a
more conventional LISP format.

string-= 
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string->=
side-effects: ()
description: ((copy-of arg-0))

upcase signature: string x string -> t

signature: string -> string
result: result
side-effects: ()
description: ((ordinal-comparison arg-0 arg-1)) result: arg-0

string-length 
side-effects: ()
description: ((modify-property arg-0))

Makes a string all upper case.signature: string -> fixnum
result: result

downcase side-effects: ()
description: ((property-value arg-0 result))

signature: string -> string
concatenate result: arg-0

signature: string x string -> string
side-effects: ()
description: ((modify-property arg-0))

result: result
Makes a string all lower case.side-effects: ()

description: ((sum arg-0 arg-1))

null-string 
reverse 

signature: string -> t
signature: string -> string result: result
result: arg-0 side-effects: ()
side-effects: () description: ((property-test arg-0))
description: ((modify-property arg-0))

                                                                                
get-substring 

10. THERMOSTAT DOMAIN
signature: fixnum x fixnum x string -> string

A simple simulation of room-heater-
thermostat systems.

result: result
side-effects: ()
description: ((list-of-elements arg-2 result))

CLASSES
Finds a substring, given the position numbers
of its first and last elements. thermostat

substring-p room

signature: string string -> t heater
result: result
side-effects: ()
description: ((ordinal-comparison arg-0 arg-1))

Determines if one string is a substring of
another.

copy-string 

signature: string -> string
result: result
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METHODS get-setting 

get-room signature: thermostat -> float

signature: heater -> room
result: result
side-effects: ()

result: result description: ((property-value arg-0 result))
side-effects: ()

get-temperature description: ((structure-component arg-0 result))

Returns the instance of room that a heater
heats.

signature: room -> float
result: result

get-room 
side-effects: ()
description: ((property-value arg-0 result))

make-thermostat signature: thermostat -> room

signature: float -> thermostat
result: result
side-effects: ()
description: ((structure-component arg-0 result)) result: result

Returns the instance of room that a
thermostat controls.

side-effects: ()
description: ((new-object result))

Creates an instance of thermostat given its
initial setting.get-heater 

make-room signature: thermostat -> heater

signature: float -> room
result: result
side-effects: ()
description: ((structure-component arg-0 result)) result: result

Returns the instance of heater that a
thermostat controls.

side-effects: ()
description: ((new-object result))

Creates an instance of room given its initial
temperature.get-thermostat 

make-heater signature: room -> thermostat

signature: -> heater
result: result
side-effects: ()
description: ((structure-component arg-0 result)) result: result

Returns the instance of thermostat that
regulates a room.

side-effects: ()
description: ((new-object result))

connect 

get-status 
signature: thermostat x heater x room -> thermostat

signature: heater -> symbol result: arg-0
side-effects: (arg-1 arg-2)result: result
description: ((combine arg-0 arg-1 arg-2))side-effects: ()

Connects a room, thermostat and heater into a
simulation.

description: ((property-value arg-0 result))

Returns "on" or "off" indicating the status of a
heater.
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reset 

signature: thermostat x float -> float
result: arg-1
side-effects: (arg-0)
description: ((set-property-value arg-0 arg-1))

Changes a thermostat setting.  The
thermostat then checks the room
temperature, and either turns on the heater or
does nothing.

reset 

signature: room x float -> float
result: arg-1
side-effects: (arg-0)
description: ((set-property-value arg-0 arg-1))

Changes a thermostat setting given the room
it is in.  The thermostat then checks the room
temperature, and either turns on the heater or
does nothing.

heat 

signature: heater -> float
result: result
side-effects: (arg-0)
description: ((modify-property arg-0))

If the heater is on, raises room temperature to
equal thermostat setting.

change-temp 

signature: room float -> float
result: arg-1
side-effects: (arg-0)
description: ((set-property-value arg-0 arg-1))

Changes a room's temperature.  The
thermostat then compares it to its setting,
and turns on the heater if the new
temperature is less.
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Appendix 2

The Problem Set Used in the Tests of Chapter 4

                                                                                                                                                                      

The problem set used in evaluating SCAVENGER in chapter 4 consisted of 112

different problems from the various domains.  The problems are all solvable using

the source base.  Since SCAVENGER does not abandon an unsolvable problem until

performing an exhaustive search, I felt that including unsolvable problems would

only distort my efforts to evaluate program performance.

The problems were distributed over the various domains as follows:

Domain # problems

data structure 32

rational numbers 9

dates 13

accounting 9

complex numbers 9

locations 4

strings 20

thermostat simulation 8

investments 8

Total 112

A SCAVENGER problem is a transcript of a series of LISP executions and their

results.  The operator -> represents a single LISP evaluation; it takes two arguments:

the evaluated form and the result.  Expressions of the form: (instance class-name #)

indicate an instance of a class.  In order to best illustrate the nature of the target

problems, I present the complete set of target problems for the data structure classes,

followed by smaller samples of problems from each of the other domains.  The

comment at the beginning of each problem illustrates the correct analogical

mapping.
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A sampling of test problems

;;;;;;;;;;;;; The complete set of data structure problems ;;;;;;;;;;;;;;;;;

;; target = stack

;; ?target-function-1 = push

;; ?target-function-2 = pop

;; ?target-function-3 = make-stack

(scavenger-find

 `(,(-> (setq x (?target-function-3)) (instance target 1))

   ,(-> (?target-function-1 'a x) (instance target 1))

   ,(-> (?target-function-1 'b x) (instance target 1))

   ,(-> (?target-function-2 x) b)

   ,(-> (?target-function-2 x) a)))

;; ?target-function-2 = push

;; ?target-function-3 = pop

;; ?target-function-1 = make-stack

;; ?target-function-4 = empty-c

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (?target-function-4 x) t)

   ,(-> (?target-function-2 1 x) (instance target 1))

   ,(-> (?target-function-4 x) nil)

   ,(-> (?target-function-2 2 x) (instance target 1))

   ,(-> (?target-function-3 x) 2)))

;; target = stack

;; ?target-function-2 = push
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;; ?target-function-3 = equal-c

;; ?target-function-1 = make-stack

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (setq y (?target-function-1)) (instance target 2))

   ,(-> (?target-function-2 1 x) (instance target 1))

   ,(-> (?target-function-2 2 x) (instance target 1))

   ,(-> (?target-function-2 1 y) (instance target 2))

   ,(-> (?target-function-2 2 y) (instance target 2))

   ,(-> (?target-function-3 x y) t)

   ,(-> (?target-function-2 3 y) (instance target 2))

   ,(-> (?target-function-3 x y) nil)))
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;; target = stack

;; ?target-function-1 = insert

;; ?target-function-2 = empty-p

;; ?target-function-3 = make

(scavenger-find

 `(,(-> (setq x (?target-function-3)) (instance target 1))

   ,(-> (?target-function-2 x) t)

   ,(-> (?target-function-1 'a x) (instance target 1))

   ,(-> (?target-function-2 x) nil)))

;; target = stack

;; ?target-function-1 = push

;; ?target-function-2 = equal

;; ?target-function-3 = make-stack

(scavenger-find

 `(,(-> (setq x (?target-function-3)) (instance target 1))

   ,(-> (setq y (?target-function-3)) (instance target 2))

   ,(-> (?target-function-1 'a x) (instance target 1))

   ,(-> (?target-function-1 'a y) (instance target 2))

   ,(-> (?target-function-2 x y) t)))

;; target = bag

;; ?target-function-2 = add-c

;; ?target-function-3 = count-c

;; ?target-function-1 = make-bag

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (?target-function-2 t x) (instance target 1))
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   ,(-> (?target-function-2 t x) (instance target 1))

   ,(-> (?target-function-2 t x) (instance target 1))

   ,(-> (?target-function-3 x) 3)))

;; target = bag

;; ?target-function-2 = add-c

;; ?target-function-3 = count-c

;; ?target-function-4 = member-c

;; ?target-function-1 = make-bag

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (?target-function-2 nil x) (instance target 1))

   ,(-> (?target-function-2 nil x) (instance target 1))

   ,(-> (?target-function-3 x) 2)

   ,(-> (?target-function-4 nil x) t)))

215



;; target = bag

;; ?target-function-2 = add-c

;; ?target-function-3 = count-c

;; ?target-function-4 = delete-c

;; ?target-function-1 = make-bag

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (?target-function-2 t x) (instance target 1))

   ,(-> (?target-function-2 t x) (instance target 1))

   ,(-> (?target-function-3 x) 2)

   ,(-> (?target-function-4 t x) (instance target 1))

   ,(-> (?target-function-3 x) 1)))

;; target = bag

;; ?target-function-1 = add

;; ?target-function-2 = count-members

;; ?target-function-3 = make-bag

(scavenger-find

 `(,(-> (setq x (?target-function-3)) (instance target 1))

   ,(-> (?target-function-1 'a x) (instance target 1))

   ,(-> (?target-function-2 x) 1)

   ,(-> (?target-function-1 'b x) (instance target 1))

   ,(-> (?target-function-2 x) 2)))

;; target = bag

;; ?target-function-1 = add-to-collection

;; ?target-function-2 = union

;; ?target-function-3 = member

;; ?target-function-4 = make-collection
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(scavenger-find

 `(,(-> (setq x (?target-function-4)) (instance target 1))

   ,(-> (setq y (?target-function-4)) (instance target 2))

   ,(-> (?target-function-1 'a x) (instance target 1))

   ,(-> (?target-function-1 'b y) (instance target 2))

   ,(-> (setq z (?target-function-2 x y)) (instance target 3))

   ,(-> (?target-function-3 'a z) t)

   ,(-> (?target-function-3 'b z) t)))

;; target = bag

;; ?target-function-2 = add-c

;; ?target-function-3 = count-c

;; ?target-function-4 = union-c

;; ?target-function-1 = make-bag

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (setq y (?target-function-1)) (instance target 2))

   ,(-> (?target-function-2 t x) (instance target 1))

   ,(-> (?target-function-2 t x) (instance target 1))

   ,(-> (?target-function-2 t x) (instance target 1))

   ,(-> (?target-function-3 x) 3)

   ,(-> (?target-function-2 t y) (instance target 2))

   ,(-> (?target-function-2 t y) (instance target 2))

   ,(-> (?target-function-3 (target-function-4 x y)) 5)))

;; target = bag

;; ?target-function-2 = add-c

;; ?target-function-3 = equal-c

;; ?target-function-1 = make-set
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(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (setq y (?target-function-1)) (instance target 1))

   ,(-> (?target-function-2 'b x) (instance target 1))

   ,(-> (?target-function-2 'b x) (instance target 1))

   ,(-> (?target-function-2 'b x) (instance target 1))

   ,(-> (?target-function-2 'b y) (instance target 2))

   ,(-> (?target-function-2 'b y) (instance target 2))

   ,(-> (?target-function-2 'b y) (instance target 2))

   ,(-> (?target-function-3 y x) t)))

;; target = bag

;; ?target-function-2 = add-c

;; ?target-function-3 = equal-c

;; ?target-function-1 = make-set

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (setq y (?target-function-1)) (instance target 1))

   ,(-> (?target-function-2 'a x) (instance target 1))

   ,(-> (?target-function-2 'b x) (instance target 1))

   ,(-> (?target-function-2 'b x) (instance target 1))

   ,(-> (?target-function-2 'a y) (instance target 2))

   ,(-> (?target-function-2 'b y) (instance target 2))

   ,(-> (?target-function-3 y x) nil)))
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;; target = set

;; ?target-function-2 = add-c

;; ?target-function-3 = count-c

;; ?target-function-4 = union-c

;; ?target-function-1 = make-set

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (setq y (?target-function-1)) (instance target 2))

   ,(-> (?target-function-2 'a x) (instance target 1))

   ,(-> (?target-function-2 'b x) (instance target 1))

   ,(-> (?target-function-2 'a y) (instance target 2))

   ,(-> (?target-function-2 'c y) (instance target 2))

   ,(-> (?target-function-3 (?target-function-4 x y)) 3)))

;; target = set

;; ?target-function-2 = add-c

;; ?target-function-3 = count-c

;; ?target-function-4 = intersection-c

;; ?target-function-1 = make-set

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (setq y (?target-function-1)) (instance target 2))

   ,(-> (?target-function-2 'a x) (instance target 1))

   ,(-> (?target-function-2 'b x) (instance target 1))

   ,(-> (?target-function-2 'a y) (instance target 2))

   ,(-> (?target-function-2 'c y) (instance target 2))

   ,(-> (?target-function-3 (?target-function-4 x y)) 1)))
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;; target = set

;; ?target-function-2 = add-c

;; ?target-function-3 = count-c

;; ?target-function-1 = make-set

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (?target-function-2 'a x) (instance target 1))

   ,(-> (?target-function-2 'b x) (instance target 1))

   ,(-> (?target-function-2 'a x) (instance target 1))

   ,(-> (?target-function-3 x) 2)))

;; target = set

;; ?target-function-2 = add-c

;; ?target-function-3 = equal-c

;; ?target-function-1 = make-set

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (setq y (?target-function-1)) (instance target 1))

   ,(-> (?target-function-2 'a x) (instance target 1))

   ,(-> (?target-function-2 'b x) (instance target 1))

   ,(-> (?target-function-2 'c x) (instance target 1))

   ,(-> (?target-function-2 'b y) (instance target 2))

   ,(-> (?target-function-2 'c y) (instance target 2))

   ,(-> (?target-function-2 'a y) (instance target 2))

   ,(-> (?target-function-3 y x) t)))

;; target = set

;; ?target-function-2 = add-c

;; ?target-function-3 = equal-c

;; ?target-function-1 = make-set
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(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (setq y (?target-function-1)) (instance target 1))

   ,(-> (?target-function-2 'a x) (instance target 1))

   ,(-> (?target-function-2 'b x) (instance target 1))

   ,(-> (?target-function-2 'c x) (instance target 1))

   ,(-> (?target-function-2 'a y) (instance target 2))

   ,(-> (?target-function-2 'b y) (instance target 2))

   ,(-> (?target-function-2 'b y) (instance target 2))

   ,(-> (?target-function-3 y x) nil)))

;; target = set

;; ?target-function-2 = add-c

;; ?target-function-3 = del-c

;; ?target-function-4 = member-c

;; ?target-function-1 = make-set

(scavenger-find

 `(,(-> (setq x (?target-function-1)) (instance target 1))

   ,(-> (?target-function-2 'a x) (instance target 1))

   ,(-> (?target-function-2 'b x) (instance target 1))

   ,(-> (?target-function-4 'a x) t)

   ,(-> (?target-function-3 'a x) (instance target 1))

   ,(-> (?target-function-4 'a x) nil)))

;; target = set

;; ?target-function-1 = make-set

;; ?target-function-2 = add-to-set

;; ?target-function-3 = member

;; ?target-function-4 = intersection
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(scavenger-find

   `(,(-> (setq x (?target-function-1)) (instance target 1))

     ,(-> (setq y (?target-function-1)) (instance target 2))

     ,(-> (?target-function-2 'a x) (instance target 1))

     ,(-> (?target-function-2 'b x) (instance target 1))

     ,(-> (?target-function-2 'a y) (instance target 2))

     ,(-> (?target-function-2 'c y) (instance target 2))

     ,(-> (setq z (?target-function-4 x y)) (instance target 3))

     ,(-> (?target-function-3 'a z) t)

     ,(-> (?target-function-3 'b z) nil)

     ,(-> (?target-function-3 'c z) nil)))

;; target = sorted-queue

;; ?target-function-1 = make-queue

;; ?target-function-2 = insert-c

;; ?target-function-3 = first

(scavenger-find

   `(,(-> (setq x (?target-function-1)) (instance target 1))

     ,(-> (?target-function-2 1 x) (instance target 1))

     ,(-> (?target-function-2 5 x) (instance target 1))

     ,(-> (?target-function-2 3 x) (instance target 1))

     ,(-> (?target-function-3 x) 1)

     ,(-> (?target-function-3 x) 3)))

;; target = sorted-queue

;; ?target-function-1 = make-queue

;; ?target-function-2 = insert-c

;; ?target-function-3 = equal-c
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(scavenger-find

   `(,(-> (setq x (?target-function-1)) (instance target 1))

     ,(-> (setq y (?target-function-1)) (instance target 2))

     ,(-> (?target-function-2 1 x) (instance target 1))

     ,(-> (?target-function-2 5 x) (instance target 1))

     ,(-> (?target-function-2 3 x) (instance target 1))

     ,(-> (?target-function-2 3 y) (instance target 2))

     ,(-> (?target-function-2 5 y) (instance target 2))

     ,(-> (?target-function-2 1 y) (instance target 2))

     ,(-> (?target-function-3 x y) t)

     ,(-> (?target-function-4 x) 1)

     ,(-> (?target-function-4 x) 3)))

;; target = sorted-queue

;; ?target-function-1 = make-queue

;; ?target-function-2 = insert-c

;; ?target-function-3 = first

;; ?target-function-4 = merge

(scavenger-find

   `(,(-> (setq x (?target-function-1)) (instance target 1))

     ,(-> (setq y (?target-function-1)) (instance target 2))

     ,(-> (?target-function-2 1 x) (instance target 1))

     ,(-> (?target-function-2 5 x) (instance target 1))

     ,(-> (?target-function-2 3 y) (instance target 2))

     ,(-> (?target-function-2 2 y) (instance target 2))

     ,(-> (setq z (?target-function-4 x y)) (instance target 3))

     ,(-> (?target-function-3 z) 1)

     ,(-> (?target-function-3 z) 2)

     ,(-> (?target-function-3 z) 3)))
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;; target = queue

;; ?target-function-1 = make-queue

;; ?target-function-2 = enqueue

;; ?target-function-3 = dequeue

(scavenger-find

   `(,(-> (setq x (?target-function-1)) (instance target 1))

     ,(-> (?target-function-2 'a x) (instance target 1))

     ,(-> (?target-function-2 'b x) (instance target 1))

     ,(-> (?target-function-3 x) a)

     ,(-> (?target-function-3 x) b)))

;; target = queue

;; ?target-function-1 = make-queue

;; ?target-function-2 = enqueue

;; ?target-function-3 = dequeue

;; ?target-function-4 = empty

(scavenger-find

   `(,(-> (setq x (?target-function-1)) (instance target 1))

     ,(-> (?target-function-4 x) t)

     ,(-> (?target-function-2 1 x) (instance target 1))

     ,(-> (?target-function-2 2 x) (instance target 1))

     ,(-> (?target-function-4 x) nil)

     ,(-> (?target-function-3 x) 1)

     ,(-> (?target-function-3 x) 2)))

;; target = queue

;; ?target-function-1 = make-queue

;; ?target-function-2 = enqueue

;; ?target-function-3 = dequeue

;; ?target-function-4 = concatenate
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(scavenger-find

   `(,(-> (setq x (?target-function-1)) (instance target 1))

     ,(-> (?target-function-2 'a x) (instance target 1))

     ,(-> (?target-function-2 'b x) (instance target 1))

     ,(-> (setq y (?target-function-1)) (instance target 2))

     ,(-> (?target-function-2 'c x) (instance target 2))

     ,(-> (?target-function-2 'd x) (instance target 2))

     ,(-> (setq z (?target-function-4 x y)) (instance target 3))

     ,(-> (?target-function-3 z) a)

     ,(-> (?target-function-3 z) b)

     ,(-> (?target-function-3 z) c)

     ,(-> (?target-function-3 z) d)))

;; target = deque

;; ?target-function-1 = make-deque

;; ?target-function-2 = enqueue

;; ?target-function-3 = enqueue-front

;; ?target-function-4 = dequeue

;; ?target-function-5 = dequeue-rear

(scavenger-find

   `(,(-> (setq x (?target-function-1)) (instance target 1))

     ,(-> (?target-function-2 'a x) (instance target 1))

     ,(-> (?target-function-2 'b x) (instance target 1))

     ,(-> (?target-function-3 'c x) (instance target 1))

     ,(-> (?target-function-3 'd x) (instance target 1))

     ,(-> (?target-function-4 x) d)

     ,(-> (?target-function-5 x) b)))
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;; target = alist

;; ?target-function-1 = make-alist

;; ?target-function-2 = acons

;; ?target-function-3 = assoc

(scavenger-find

   `(,(-> (setq x (?target-function-1)) (instance target 1))

     ,(-> (?target-function-2 1 'a x) (instance target 1))

     ,(-> (?target-function-2 2 'b x) (instance target 1))

     ,(-> (cdr (?target-function-3 2 x)) b)))

;; target = alist

;; ?target-function-1 = make-alist

;; ?target-function-2 = acons

;; ?target-function-3 = assoc

(scavenger-find

   `(,(-> (setq x (?target-function-1)) (instance target 1))

     ,(-> (?target-function-2 1 'a x) (instance target 1))

     ,(-> (?target-function-2 2 'b x) (instance target 1))

     ,(-> (?target-function-2 3 'c x) (instance target 1))

     ,(-> (car (?target-function-3 2 x)) 2)

     ,(-> (cdr (?target-function-3 2 x)) b)))

;;;;;;;;;;;;;;;;;;;A sample of rational number problems;;;;;;;;;;;;;;;

;; target = rational

;; ?target-function-1 = make-rational

;; ?target-function-2 = get-numerator

;; ?target-function-3 = get-denominator

;; ?target-function-4 = rational-+
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(scavenger-find

 `(,(-> (setq x (?target-function-1 1 3)) (instance target 1))

   ,(-> (setq y (?target-function-1 1 4)) (instance target 2))

   ,(-> (setq z (?target-function-4 x y)) (instance target 3))

   ,(-> (?target-function-2 z) 7)

   ,(-> (?target-function-3 z) 12)))

;; target = rational

;; ?target-function-1 = make-rational

;; ?target-function-2 = get-numerator

;; ?target-function-3 = get-denominator

;; ?target-function-4 = rational-/

(scavenger-find

 `(,(-> (setq x (?target-function-1 2 3)) (instance target 1))

   ,(-> (setq y (?target-function-1 1 1)) (instance target 2))

   ,(-> (?target-function-2 x) 2)

   ,(-> (?target-function-3 x) 3)

   ,(-> (setq y (?target-function-4 y x)) (instance target 3))

   ,(-> (?target-function-2 y) 3)

   ,(-> (?target-function-3 y) 2)))

;
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;;;;;;;;;;;;;;;;;;A sample of date problems ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; target = date

;; ?target-function-1 = make-date

;; ?target-function-2 = get-month

;; ?target-function-3 = get-day

;; ?target-function-4 = get-year

(scavenger-find

 `(,(-> (setq x (?target-function-1 7 4 1994)) (instance target 1))

   ,(-> (?target-function-2 x) 7)

   ,(-> (?target-function-3 x) 4)

   ,(-> (?target-function-4 x) 1994)))

;; target = date

;; ?target-function-1 = make-date

;; ?target-function-2 = date-=

;; ?target-function-3 = date-increment

;; ?target-function-4 = date-decrement

(scavenger-find

 `(,(-> (setq x (?target-function-1 1 1 1994)) (instance target 1))

   ,(-> (setq y (?target-function-1 1 1 1994)) (instance target 2))

   ,(-> (?target-function-4 y) (instance target 2))

   ,(-> (?target-function-2 x (?target-function-3 y)) t)))

;; target = date

;; ?target-function-1 = make-date

;; ?target-function-2 = date-<

;; ?target-function-3 = date-=

;; ?target-function-4 = date-inc

;; ?target-function-5 = date-dec
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(scavenger-find

 `(,(-> (setq x (?target-function-1 1 1 1994)) (instance target 1))

   ,(-> (setq y (?target-function-1 1 1 1994)) (instance target 2))

   ,(-> (?target-function-4 x) (instance target 1))

   ,(-> (?target-function-2 y x) t)
   ,(-> (?target-function-3 y (?target-function-5 x)) t)))

;;;;;;;;;;;;;;;;;;;A sample of account problems;;;;;;;;;;;;;;;;;;;;;;;;

;; target-1 = account

;; target-2 = date

;; ?target-function-1 = make-account

;; ?target-function-2 = make-date

;; ?target-function-3 = post-transaction

;; ?target-function-4 = get-balance

(scavenger-find

 `(,(-> (setq x (?target-function-1 1234 (?target-function-2 1 1 1994)))

        (instance target-1 1))

   ,(-> (?target-function-4 x) 0.0)

   ,(-> (?target-function-3 x 100.00 (?target-function-2 1 20 1994))

        (instance target-1 1))

   ,(-> (?target-function-3 x 150.00 (?target-function-2 1 30 1994))

        (instance target-1 1))

   ,(-> (?target-function-3 x -200.00 (?target-function-2 2 21 1994))

        (instance target-1 1))

   ,(-> (?target-function-4 x) 50.00)))
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;; target-1 = account

;; target-2 = date

;; ?target-function-1 = make-account

;; ?target-function-2 = make-date

;; ?target-function-3 = post-transaction

;; ?target-function-4 = list-transactions

;; ?target-function-5 = find- transaction

(scavenger-find

 `(,(-> (setq x (?target-function-1 1234 (?target-function-2 1 1 1994)))

        (instance target-1 1))

   ,(-> (?target-function-3 x 10.00 (?target-function-2 1 20 1994))

        (instance target-1 1))

   ,(-> (?target-function-3 x 15.00 (?target-function-2 1 20 1994))

        (instance target-1 1))

   ,(-> (?target-function-3 x -20.00 (?target-function-2 1 20 1994))

        (instance target-1 1))

   ,(-> (length (?target-function-4 x)) 3)

   ,(-> (length (?target-function-5 x (?target-function-2 1 20 1994))) 3)))

;;;;;;;;;;;;;;;;;;;;A sample of complex number problems;;;;;;;;;;;;;;;

;; target = complex

;; ?target-function-1 = make-complex

;; ?target-function-2 = complex-sqrt

;; ?target-function-3 = get-real-part

;; ?target-function-4 = get-imaginary-part

(scavenger-find
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; example

 `(,(-> (setq x (?target-function-1 -1 0)) (instance target 1))

   ,(-> (setq y (?target-function-2 x)) (instance target 2))

   ,(-> (?target-function-3 y) 0)

   ,(-> (?target-function-4 y) 1)))

;; target = complex

;; ?target-function-1 = make-complex

;; ?target-function-2 = complex-sqrt

;; ?target-function-3 = complex-*

;; ?target-function-4 = complex-=

(scavenger-find

 `(,(-> (setq x (?target-function-1 -1 0)) (instance target 1))

   ,(-> (setq y (?target-function-2 x)) (instance target 2))

   ,(-> (?target-function-4

         x

         (?target-function-3 y y)) t)))

;;;;;;;;;;;;;;;;;;;A sample of location problems;;;;;;;;;;;;;;;;;;;;;;;;

;; target-class = location

;; ?target-method-1 = make-location

;; ?target-method-2 = distance

(scavenger-find

 `(,(-> (setq x (?target-method-1 0 0)) (instance target 1))

   ,(-> (setq y (?target-method-1 3 4)) (instance target 2))

   ,(-> (?target-method-2 x y)

        5)))

;

231



;;;;;;;;;;;;;;;;;;A sample of string problems;;;;;;;;;;;;;;;;;;;;;;;;

;; target-class = string

;; ?target-method-1 = make-string

;; ?target-method-2 = concatenate

;; ?target-method-3 = display

;; ?target-method-4 = null-string

(scavenger-find

 `(,(-> (setq x (?target-method-1 "")) (instance target 1))

   ,(-> (?target-method-4 x) t)

   ,(-> (setq y (?target-method-1 "hello")) (instance target 2))

   ,(-> (?target-method-4 y) nil)

   ,(-> (setq z (target-method-2 x y)) (instance target 3))

   ,(-> (?target-method-3 z) "hello")))

;; target-class = string

;; ?target-method-1 = make-string

;; ?target-method-2 = display

;; ?target-method-3 = upcase

;; ?target-method-4 = downcase

(scavenger-find

 `(,(-> (setq x (?target-method-1 "hello")) (instance target 1))

   ,(-> (?target-method-3 x) (instance target 1))

   ,(-> (?target-method-2 x) "HELLO")

   ,(-> (?target-method-4 x) (instance target 1))

   ,(-> (?target-method-2 x) "hello")))

;; target-class = string

;; ?target-method-1 = make-string

;; ?target-method-2 = substring-p
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(scavenger-find

 `(,(-> (setq x (?target-method-1 "Good morning")) (instance target 1))

   ,(-> (setq y (?target-method-1 "morning")) (instance target 2))

   ,(-> (setq z (?target-method-1 "evening")) (instance target 3))

   ,(-> (?target-method-2 y x) 5)

   ,(-> (?target-method-2 z x) nil)))

;;;;;;;;;;;;;;;;;;;;A sample of thermostat problems;;;;;;;;;;;;;;;;;;;;;;;;;

;; target-class-1 = thermostat

;; target-class-2 = room

;; target-class-3 = heater

;; ?target-method-1 = make-thermostat

;; ?target-method-2 = make-room

;; ?target-method-3 = make-heater

;; ?target-method-4 = connect

;; ?target-method-6 = get-temperature

;; ?target-method-7 = heat

(scavenger-find

 `(,(-> (setq x (?target-method-1 70.0)) (instance target-class-1 1))

   ,(-> (setq r (?target-method-2 65.0)) (instance target-class-2 1))

   ,(-> (setq h (?target-method-3)) (instance target-class-3 1))

   ,(-> (?target-method-4 x h r) (instance target-class-1 1))

   ,(-> (?target-method-6 r) 65.0)

   ,(-> (?target-method-7 h) ?)

   ,(-> (?target-method-6 r) 70.0)))
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;;;;;;;;;;;;;;;;;;;A sample of Investment problems ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; target-1 = fixed-rate-investment

;; ?target-method-1 = make-fixed-rate-investment

;; ?target-method-2 = make-date

;; ?target-method-3 = get-value

(scavenger-find

 `(,(-> (setq x (?target-method-1 "foo" 100.00 (?target-method-2 1 1 1994) 0.07))

        (instance target-1 1))

   ,(-> (?target-method-3 x (?target-method-2 1 1 1994)) 100.00)

   ,(-> (?target-method-3 x (?target-method-2 1 1 1995)) 107.00)))
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Appendix 3

A SCAVENGER Hierarchy

                                                                                                                                                                      

The following hierarchy resulted from one of the runs of chapter 4.  It was produced

by 5 iterations on a training set of 57 problems.  The training set was re-ordered

before each run.  I have used both indentation and explicit labels to show the level

of each node in the hierarchy.  Because this is a direct copy of output produced by my

program, some of the types and methods appear in LISP syntax.  For example, the

expression, #<INDEX-CLASS #x484381>, indicates an instance of index-class with id

number 484381.  An index class is a "dummy" class used by an index to match target

classes and reference source classes.  Similarly, #:|index-method82654| indicates a "dummy"

index method used to match targets and reference sources.

#<INDEX #x2C0D49> is at level 0

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 0 sources indexed.

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x484329> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 9 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method82654|

|(#<INDEX-CLASS #x484381> #<INDEX-CLASS #x484381>) -> #<INDEX-CLASS #x484381>

|Result = RESULT

|Side-effects = NIL

|Description = ((SUM ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x48D2F9> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 2 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method84543|

|(INTEGER INTEGER) -> #<INDEX-CLASS #x484381>

|Result = RESULT

|Side-effects = NIL

|Description = ((NEW-OBJECT RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x4831F1> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 1 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method82307|

|(#<INDEX-CLASS #x483249>) -> #<INDEX-CLASS #x483249>

|Result = RESULT

|Side-effects = NIL

|Description = ((COPY-OF ARG-0))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x48D0F9> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 2 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method84434|

|(#<INDEX-CLASS #x483249> #<INDEX-CLASS #x483249>) -> T

|Result = RESULT

|Side-effects = NIL

|Description = ((EQUALITY-TEST ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x478111> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 1 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method80968|

|(#<INDEX-CLASS #x478169>) -> STRING

|Result = RESULT

|Side-effects = NIL

|Description = ((PROPERTY-VALUE ARG-0 RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x4790A1> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 2 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method81504|

|(#<INDEX-CLASS #x478169> #<INDEX-CLASS #x478169>) -> #<INDEX-CLASS

#x478169>

|Result = RESULT

|Side-effects = NIL

|Description = ((SUM ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x4788E1> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 3 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method81119|

|(#<INDEX-CLASS #x478169>) -> #<INDEX-CLASS #x478169>

|Result = ARG-0

|Side-effects = NIL

|Description = ((MODIFY-PROPERTY ARG-0))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x472689> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 1 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method80867|

|(#<INDEX-CLASS #x4726E1> #<INDEX-CLASS #x4726E1>) -> #<INDEX-CLASS #x4726E1>

|Result = RESULT

|Side-effects = NIL

|Description = ((SELECT-ARGUMENT ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x472521> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 1 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method80739|

|(#<INDEX-CLASS #x472579>) -> FLOAT

|Result = RESULT

|Side-effects = (ARG-0)

|Description = ((MODIFY-PROPERTY ARG-0))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x46ADD9> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 4 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method79481|

|(NUMBER NUMBER) -> #<INDEX-CLASS #x46AE31>

|Result = RESULT

|Side-effects = NIL

|Description = ((NEW-OBJECT RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x479681> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 2 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method82238|

|(#<INDEX-CLASS #x46AE31> #<INDEX-CLASS #x46AE31>) ->

| #<INDEX-CLASS #x46AE31>

|Result = RESULT

|Side-effects = NIL

|Description = ((TIMES ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x46AC81> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 1 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method79401|

|(#<INDEX-CLASS #x46ACD9> #<INDEX-CLASS #x46ACD9>) -> NUMBER

|Result = RESULT

|Side-effects = NIL

|Description = ((DIFF ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x46A8C1> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 7 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method79371|

|(T #<INDEX-CLASS #x46A919>) -> #<INDEX-CLASS #x46A919>

|Result = ARG-1

|Side-effects = NIL

|Description = ((ADD-TO-COLLECTION ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x478B39> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 2 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method81244|

|(#<INDEX-CLASS #x46A919>) -> FIXNUM

|Result = RESULT

|Side-effects = NIL

|Description = ((PROPERTY-VALUE ARG-0 RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x477D31> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 5 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method80911|

|(#<INDEX-CLASS #x46A919>) -> T

|Result = RESULT

|Side-effects = (ARG-0)

|Description = ((REMOVE-FROM-COLLECTION RESULT ARG-0))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x484A01> is at level 3

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 5 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method82918|

|(#<INDEX-CLASS #x46A919>) -> T

|Result = RESULT

|Side-effects = NIL

|Description = ((PROPERTY-TEST ARG-0))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x46B7E9> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 7 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method79918|

|(#<INDEX-CLASS #x46A919> #<INDEX-CLASS #x46A919>) -> #<INDEX-CLASS

#x46A919>

|Result = RESULT

|Side-effects = NIL

|Description = ((SUM ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x46B501> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 3 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method79805|

|(T #<INDEX-CLASS #x46A919>) -> #<INDEX-CLASS #x46A919>

|Result = ARG-1

|Side-effects = NIL

|Description = ((REMOVE-FROM-COLLECTION ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x485869> is at level 3

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 2 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method84070|

|(#<INDEX-CLASS #x46A919>) -> FIXNUM

|Result = RESULT

|Side-effects = NIL

|Description = ((PROPERTY-VALUE ARG-0 RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x46A679> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 4 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method79263|

|(#<INDEX-CLASS #x46A6D1>) -> T

|Result = RESULT

|Side-effects = (ARG-0)

|Description = ((REMOVE-FROM-COLLECTION RESULT ARG-0))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x46A521> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 1 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method79153|

|(T #<INDEX-CLASS #x46A579>) -> CONS

|Result = RESULT

|Side-effects = NIL

|Description = ((FIND-ON-KEY ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x46A029> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 10 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method79071|

|(#<INDEX-CLASS #x46A081> #<INDEX-CLASS #x46A081>) -> T

|Result = RESULT

|Side-effects = NIL

|Description = ((ORDINAL-COMPARISON ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x46F101> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 44 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method80164|

|(#<INDEX-CLASS #x46A081> #<INDEX-CLASS #x46A081>) -> T

|Result = RESULT

|Side-effects = NIL

|Description = ((ORDINAL-COMPARISON ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x469ED9> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 1 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method79039|

|(T #<INDEX-CLASS #x469F31>) -> #<INDEX-CLASS #x469F31>

|Result = RESULT

|Side-effects = NIL

|Description = ((REMOVE-FROM-COLLECTION ARG-0 (COPY-OF ARG-1)))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x469BD9> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 5 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method79002|

|(#<INDEX-CLASS #x469C31> #<INDEX-CLASS #x469C31>) -> #<INDEX-CLASS #x469C31>

|Result = RESULT

|Side-effects = NIL

|Description = ((DIFF ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x484EE1> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 4 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method83167|

|(NUMBER NUMBER) -> #<INDEX-CLASS #x469C31>

|Result = RESULT

|Side-effects = NIL

|Description = ((NEW-OBJECT RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x478D69> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 2 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method81401|

|(INTEGER INTEGER) -> #<INDEX-CLASS #x469C31>

|Result = RESULT

|Side-effects = NIL

|Description = ((NEW-OBJECT RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x471F61> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 2 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method80575|

|(T #<INDEX-CLASS #x469C31>) -> #<INDEX-CLASS #x469C31>

|Result = ARG-1

|Side-effects = NIL

|Description = ((ADD-TO-COLLECTION ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x48D509> is at level 3

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 2 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method84628|

|(#<INDEX-CLASS #x469C31>) -> FIXNUM

|Result = RESULT

|Side-effects = NIL

|Description = ((PROPERTY-VALUE ARG-0 RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x469149> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 3 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method78896|

|(INTEGER INTEGER INTEGER) -> #<INDEX-CLASS #x4691A1>

|Result = RESULT

|Side-effects = NIL

|Description = ((NEW-OBJECT RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x485241> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 6 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method83213|

|(#<INDEX-CLASS #x4691A1> #<INDEX-CLASS #x4691A1>) -> T

|Result = RESULT

|Side-effects = NIL

|Description = ((ORDINAL-COMPARISON ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x478249> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 9 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method81030|

|(#<INDEX-CLASS #x4691A1>) -> FIXNUM

|Result = RESULT

|Side-effects = NIL

|Description = ((STRUCTURE-COMPONENT ARG-0))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x472169> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 3 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method80653|

|(INTEGER #<INDEX-CLASS #x4691A1>) -> #<INDEX-CLASS #x4721C1>

|Result = RESULT

|Side-effects = NIL

|Description = ((NEW-OBJECT RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x4792A1> is at level 3

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 3 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method82189|

|(#<INDEX-CLASS #x4721C1>) -> LIST

|Result = RESULT

|Side-effects = NIL

|Description = ((LIST-OF-ELEMENTS ARG-0 RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x471A51> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 6 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method80346|

|(#<INDEX-CLASS #x4691A1> #<INDEX-CLASS #x4691A1>) -> INTEGER

|Result = RESULT

|Side-effects = NIL

|Description = ((DIFF ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x46ED21> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 3 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method80120|

|(STRING FLOAT #<INDEX-CLASS #x4691A1> FLOAT) -> #<INDEX-CLASS #x46ED79>

|Result = RESULT

|Side-effects = NIL

|Description = ((NEW-OBJECT RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x46B059> is at level 2

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 6 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method79615|

|(#<INDEX-CLASS #x4691A1>) -> #<INDEX-CLASS #x4691A1>

|Result = ARG-0

|Side-effects = NIL

|Description = ((MODIFY-PROPERTY ARG-0))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x483331> is at level 3

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 18 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method82396|

|(#<INDEX-CLASS #x4691A1>) -> FIXNUM

|Result = RESULT

|Side-effects = NIL

|Description = ((STRUCTURE-COMPONENT ARG-0))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x470EB1> is at level 3

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 12 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method80273|

|(#<INDEX-CLASS #x4691A1> #<INDEX-CLASS #x4691A1>) -> T

|Result = RESULT

|Side-effects = NIL

|Description = ((ORDINAL-COMPARISON ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x48B471> is at level 4

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 24 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method84305|

|(#<INDEX-CLASS #x4691A1> #<INDEX-CLASS #x4691A1>) -> T

|Result = RESULT

|Side-effects = NIL

|Description = ((ORDINAL-COMPARISON ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#<INDEX #x468F81> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 2 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method78849|

|(#<INDEX-CLASS #x468FD9> #<INDEX-CLASS #x468FD9>) -> INTEGER

|Result = RESULT

|Side-effects = NIL

|Description = ((DIFF ARG-0 ARG-1))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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#<INDEX #x468DE9> is at level 1

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

| 1 sources indexed.

| - - - - - - - - - - - - - -

|#:|index-method78776|

|(INTEGER #<INDEX-CLASS #x468E69>) -> #<INDEX-CLASS #x468E41>

|Result = RESULT

|Side-effects = NIL

|Description = ((NEW-OBJECT RESULT))

| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Appendix 4

Sample SCAVENGER Runs

                                                                                                                                                                      

This appendix presents several transcripts of SCAVENGER runs produced by the tests

of chapter 4.  I have annotated them with explanatory comments; these appear in

italics.

An example of a bag's behavior

In this example, SCAVENGER interprets an example of the behavior of the class, bag.

The initial call is:

(scavenger-find
`(,(-> (setq x (?target-function-1)) (instance target 1))
,(-> (?target-function-2 t x) (instance target 1))
,(-> (?target-function-2 t x) (instance target 1))
,(-> (?target-function-3 x) 2)
,(-> (?target-function-4 t x) (instance target 1))
,(-> (?target-function-3 x) 1)))

The intended interpretation is33 :

target = bag
?target-function-2 = add-c
?target-function-3 = count-c
?target-function-4 = delete-c
?target-function-1 = make-bag

SCAVENGER prints the target transcript in a more readable form:

Interpreting target problem:
      ? (SETQ X (?TARGET-FUNCTION-1))
     (INSTANCE TARGET 1)
      ? (?TARGET-FUNCTION-2 T X)
     (INSTANCE TARGET 1)
      ? (?TARGET-FUNCTION-2 T X)
     (INSTANCE TARGET 1)
      ? (?TARGET-FUNCTION-3 X)
     2
      ? (?TARGET-FUNCTION-4 T X)

33 I added the "-c" suffix  to many source methods in order to avoid name collisions with

built in LISP functions such as delete.
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     (INSTANCE TARGET 1)
      ? (?TARGET-FUNCTION-3 X)
     1

This run was set to stop after finding the first successful hypothesis:

Found 1 successful hypotheses:
Hypotheses #<HYPOTHESIS #x2F9399> was composed of the following mappings:
   Class map.
     TARGET -----> BAG-C
   Method map.
     ?TARGET-FUNCTION-2 -----> ADD-C
          arg-0 --> arg-0; arg-1 --> arg-1
     ?TARGET-FUNCTION-1 -----> MAKE-BAG-C
     ?TARGET-FUNCTION-3 -----> COUNT-C
          arg-0 --> arg-0
     ?TARGET-FUNCTION-4 -----> DELETE-C
          arg-0 --> arg-0; arg-1 --> arg-1

Quality of fit is the percentage of the source class's methods mapped in the problem

solution.  SCAVENGER uses this to select among competing hypotheses, preferring

those with a better fit.

     The quality of fit to the source class was 0.364

SCAVENGER transfers the source definitions to the target methods:

It inferred the following causal structure:
?TARGET-FUNCTION-1 takes arguments: NIL
         returns result: RESULT
         Function has description: ((NEW-OBJECT RESULT))
?TARGET-FUNCTION-2 takes arguments: (ARG-0 ARG-1)
         returns result: ARG-1
         Function has description: ((ADD-TO-COLLECTION ARG-0 ARG-1))
?TARGET-FUNCTION-4 takes arguments: (ARG-0 ARG-1)
         returns result: ARG-1
         Function has description: ((REMOVE-FROM-COLLECTION ARG-0 ARG-1))
?TARGET-FUNCTION-3 takes arguments: (ARG-0)
         returns result: RESULT
         Function has description: ((PROPERTY-VALUE ARG-0 RESULT))

It then evaluates the target under the source mapping:

Produced the evaluation:
      ? (SETQ X (MAKE-BAG-C))
     #<BAG-C #x301F69>
      ? (ADD-C T X)
     #<BAG-C #x301F69>
      ? (ADD-C T X)
     #<BAG-C #x301F69>
      ? (COUNT-C X)
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     2
      ? (DELETE-C T X)
     #<BAG-C #x301F69>
      ? (COUNT-C X)
     1
Completed search

An example of the complex number class

This run is the canonical example of the behavior of complex numbers: computing

the square root of -1.  The problem statement is:

(scavenger-find
`(,(-> (setq x (?target-function-1 -1 0)) (instance target 1))
 ,(-> (setq y (?target-function-2 x)) (instance target 2))
,(-> (?target-function-3 y) 0)
,(-> (?target-function-4 y) 1)))

The intended interpretation is:

target = complex
?target-function-1 = make-complex
?target-function-2 = complex-sqrt
?target-function-3 = get-real-part
?target-function-4 = get-imaginary-part

The transcript is:

Interpreting target problem:
      ? (SETQ X (?TARGET-FUNCTION-1 -1 0))
     (INSTANCE TARGET 1)
      ? (SETQ Y (?TARGET-FUNCTION-2 X))
     (INSTANCE TARGET 2)
      ? (?TARGET-FUNCTION-3 Y)
     0
      ? (?TARGET-FUNCTION-4 Y)
     1

Found 1 successful hypotheses:
Hypotheses #<HYPOTHESIS #x307321> was composed of the following mappings:
   Class map.
     TARGET -----> COMPLEX-NUMBER
   Method map.
     ?TARGET-FUNCTION-4 -----> GET-IMAGINARY-PART
          arg-0 --> arg-0
     ?TARGET-FUNCTION-2 -----> COMPLEX-SQRT
          arg-0 --> arg-0
     ?TARGET-FUNCTION-3 -----> GET-REAL-PART
          arg-0 --> arg-0
     ?TARGET-FUNCTION-1 -----> MAKE-COMPLEX
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          arg-0 --> arg-0; arg-1 --> arg-1
     The quality of fit to the source class was 0.444
It inferred the following causal structure:
?TARGET-FUNCTION-1 takes arguments: (ARG-0 ARG-1)
         returns result: RESULT
         Function has description: ((NEW-OBJECT RESULT))
?TARGET-FUNCTION-2 takes arguments: (ARG-0)
         returns result: RESULT
         Function has description: ((ROOT ARG-0))
?TARGET-FUNCTION-3 takes arguments: (ARG-0)
         returns result: RESULT
         Function has description: ((STRUCTURE-COMPONENT ARG-0 RESULT))
?TARGET-FUNCTION-4 takes arguments: (ARG-0)
         returns result: RESULT
         Function has description: ((STRUCTURE-COMPONENT ARG-0 RESULT))
Produced the evaluation:
      ? (SETQ X (MAKE-COMPLEX -1 0))
     #<COMPLEX-NUMBER #x31A2F9>
      ? (SETQ Y (COMPLEX-SQRT X))
     #<COMPLEX-NUMBER #x31A321>
      ? (GET-REAL-PART Y)
     0
      ? (GET-IMAGINARY-PART Y)
     1
Completed search

An example from the thermostat simulation domain

This example illustrates the thermostat simulation domain, one of the more

complex problems in the source base.  A simulation consists of instances of heater,

thermostat and room classes.  These are connected by the method connect.  Through

these connections, changes to one can effect others.  In this example, I make

instances of room and thermostat, with temperatures and settings of 65 and 70 degrees

respectively.  The heat method runs the simulation, raising the room temperature to

70.  The problem statement is:

(scavenger-find
 `(,(-> (setq x (?target-method-1 70.0)) (instance target-class-1 1))
   ,(-> (setq r (?target-method-2 65.0)) (instance target-class-2 1))
   ,(-> (setq h (?target-method-3)) (instance target-class-3 1))
   ,(-> (?target-method-4 x h r) (instance target-class-1 1))
   ,(-> (?target-method-5 r) 65.0)
   ,(-> (?target-method-6 h) ?)
   ,(-> (?target-method-5 r) 70.0)))
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The intended interpretation is:

target-class-1 = thermostat
target-class-2 = room
target-class-3 = heater
?target-method-1 = make-thermostat
?target-method-2 = make-room
?target-method-3 = make-heater
?target-method-4 = connect
?target-method-5 = get-temperature
?target-method-6 = heat

The transcript of SCAVENGER's execution is:

Interpreting target problem:

      ? (SETQ X (?TARGET-METHOD-1 70.0))
     (INSTANCE TARGET-CLASS-1 1)
      ? (SETQ R (?TARGET-METHOD-2 65.0))
     (INSTANCE TARGET-CLASS-2 1)
      ? (SETQ H (?TARGET-METHOD-3))
     (INSTANCE TARGET-CLASS-3 1)
      ? (?TARGET-METHOD-4 X H R)
     (INSTANCE TARGET-CLASS-1 1)
      ? (?TARGET-METHOD-5 R)
     65.0
      ? (?TARGET-METHOD-6 H)
     ?
      ? (?TARGET-METHOD-5 R)
     70.0

Found 1 successful hypotheses:
Hypotheses #<HYPOTHESIS #x315091> was composed of the following mappings:
   Class map.
     TARGET-CLASS-2 -----> ROOM
     TARGET-CLASS-1 -----> THERMOSTAT
     TARGET-CLASS-3 -----> HEATER
   Method map.
     ?TARGET-METHOD-2 -----> MAKE-ROOM
          arg-0 --> arg-0
     ?TARGET-METHOD-4 -----> CONNECT
          arg-0 --> arg-0; arg-1 --> arg-1; arg-2 --> arg-2
     ?TARGET-METHOD-3 -----> MAKE-HEATER
     ?TARGET-METHOD-6 -----> HEAT
          arg-0 --> arg-0
     ?TARGET-METHOD-1 -----> MAKE-THERMOSTAT
          arg-0 --> arg-0
     ?TARGET-METHOD-5 -----> GET-TEMPERATURE
          arg-0 --> arg-0
     The quality of fit to the source class was 0.400
It inferred the following causal structure:
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?TARGET-METHOD-1 takes arguments: (ARG-0)
         returns result: RESULT
         Function has description: ((NEW-OBJECT RESULT))
?TARGET-METHOD-2 takes arguments: (ARG-0)
         returns result: RESULT
         Function has description: ((NEW-OBJECT RESULT))
?TARGET-METHOD-3 takes arguments: NIL
         returns result: RESULT
         Function has description: ((NEW-OBJECT RESULT))
?TARGET-METHOD-4 takes arguments: (ARG-0 ARG-1 ARG-2)
         returns result: ARG-0
         and produces side effects on: (ARG-1 ARG-2)
         Function has description: ((COMBINE ARG-0 ARG-1 ARG-2))
?TARGET-METHOD-6 takes arguments: (ARG-0)
         returns result: RESULT
         and produces side effects on: (ARG-0)
         Function has description: ((MODIFY-PROPERTY ARG-0))
?TARGET-METHOD-5 takes arguments: (ARG-0)
         returns result: RESULT
         Function has description: ((PROPERTY-VALUE ARG-0 RESULT))

Produced the evaluation:
      ? (SETQ X (MAKE-THERMOSTAT 70.0))
     #<THERMOSTAT #x3166B9>
      ? (SETQ R (MAKE-ROOM 65.0))
     #<ROOM #x316711>
      ? (SETQ H (MAKE-HEATER))
     #<HEATER #x316759>
      ? (CONNECT X H R)
     #<THERMOSTAT #x3166B9>
      ? (GET-TEMPERATURE R)
     65.0
      ? (HEAT H)
     70.0
      ? (GET-TEMPERATURE R)
     70.0
Completed search
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Appendix 5

Buggy Operators used in the Tests of Chapter 5

                                                                                                                                                                        

This appendix lists the source method and class definitions used in the tests of

chapter 5.  These tests used the buggy operators described in (Brown and VanLehn

1980).

The sole class definition specified a working memory used to manage borrows

across columns and accumulate results.  This had the definition:

(defclass working-memory ()

    ((result :initarg :result

             :initform ()

             :reader get-result

             :writer set-result)

     (borrow :initarg :borrow

             :initform 0

             :reader get-borrow

             :writer set-borrow))))

The operations were taken from the list of bugs in appendix 2 of (Brown and

VanLehn 1980).  I have tried to implement them as faithfully as possible, although

certain ambiguities in their descriptions in the article made this occasionally

difficult.  The following lists enumerates the bugs used in the tests, along with their

signatures and the descriptions SCAVENGER used to construct its index hierarchy.

1. normal-subtract: digit x digit x working-memory -> digit

      definition: (normal-op)

2. 0-N=0/after/borrow: digit-1 x digit x working-memory -> digit-0

      definition: (subtract-error borrow-error)
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3. 0-N=N/after/borrow: digit-1 x digit x working-memory -> digit

      definition: (subtract-error borrow-error)

4. 1-1=0/after/borrow: digit-1 x digit-1 x working-memory -> digit-0

      definition: (borrow-error subtract-error)

5. 1-1=1/after/borrow: digit-1 x digit-1 x working-memory -> digit-1

      definition: (borrow-error subtract-error)

6. add-borrow-carry-sub: digit x digit x working-memory -> digit

      definition: (add-error)

7. add-borrow-decrement: digit x digit x working-memory -> digit

      definition: (decrement-error)

8. add-borrow-decrement-without-carry: digit x digit x working-memory -> digit

      definition: (decrement-error)

9. add-instead-of-sub: digit x digit x working-memory -> digit

      definition: (add-error)

10. add-no-carry-instead-of-sub: digit x digit x working-memory -> digit

      definition: (add-error)

11. always-borrow: digit x digit x working-memory -> digit

      definition (borrow-error)

12. borrow-accumulate-decrement: digit x digit x working-memory -> digit

      definition: (decrement-error)

      NOTE: This method, when combined with subtract-big-decrement gives always-borrow-left

13. subtract-accumulated-decrements: digit x digit x working-memory -> digit

      definition: (decrement-error)

258



14. blank-instead-of-borrow: digit x digit x working-memory -> blank

      definition: (borrow-error)

15. borrow-across-zero: digit-0 x digit x working-memory -> digit

      definition (borrow-error)

16. borrow-across-zero-over-blank: digit-0 x blank x working-memory -> digit-0

      definition (borrow-error)

17.  borrow-across-zero-over-zero: digit-0 x digit-0 x working-memory -> digit-0

      definition (borrow-error)

18. borrow-across-zero-touched-0-n=0: digit-0 x digit x working-memory -> digit-0

      definition (borrow-error subtract-error)

19. borrow-across-zero-touched-0-n=n: digit-0 x digit x working-memory -> digit

      definition (borrow-error subtract-error)

20. borrow-across-zero-touched-zero-is-10: digit-0 x digit x working-memory -> digit

      definition (borrow-error subtract-error)

21. borrow-add-decrement-instead-of-zero: digit-0 x digit x working-memory -> digit

      definition (borrow-error decrement-error)

22. borrow-add-is-ten: digit x digit x working-memory -> digit

      definition: (borrow-error)

23. borrow-diff-0-n=n&small-large=0: digit x digit x working-memory -> digit

      definition: (borrow-error subtract-error)

24. borrow-dont-decrement-top-smaller: digit x digit x working-memory -> digit

      definition: (decrement-error)
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25. borrow-dont-decrement-unless-bottom-smaller: digit x digit x working-memory -> digit

      definition: (decrement-error)

26. borrow-from-bottom: digit x digit x working-memory -> digit

      definition: (decrement-error)

27. borrow-from-bottom-instead-of-zero: digit-0 x digit x working-memory -> digit

      definition: (decrement-error)

28. borrow-from-larger: digit x digit x working-memory -> digit

      definition: (decrement-error)

29. borrow-from-one-is-9: digit-1 x digit x working-memory -> digit

      definition: (decrement-error)

30. borrow-from-one-is-10: digit-1 x digit x working-memory -> digit

      definition: (decrement-error)

31. borrow-from-zero: digit-0 x digit x working-memory -> digit

      definition: (decrement-error)

32. borrow-from-zero-is-10: digit-0 x digit x working-memory -> digit

      definition: (decrement-error)

33. borrow-ignore-zero-over-blank: digit-0 x blank x working-memory -> blank

      definition: (decrement-error)

34. borrow-into-one=10: digit-1 x digit x working-memory -> digit

      definition (borrow-error)

35. borrow-no-decrement: digit x digit x working-memory -> digit

      definition: (decrement-error)
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36. borrow-skip-equal: digit x digit x working-memory -> digit-0

      definition: (decrement-error)

37. borrow-treat-one-as-0: digit-1 x digit x working-memory -> digit

      definition: (decrement-error borrow-error)

38. borrow-unit-diff: digit x digit x working-memory -> digit-0

      definition: (borrow-error)

39. borrow-into-0-is-9: digit-0 x digit x working-memory -> digit

      definition: (borrow-error)

40. cant-subtract: digit x digit x working-memory -> blank

      definition: (subtract-error)

41. decrement-by-two-over-two: digit x digit-2 x working-memory -> digit

      definition: (decrement-error)

42. decrement-on-borrow: digit x digit x working-memory -> digit

      definition: (decrement-error)

43. decrement-1-to-11: digit-1 x digit x working-memory -> digit

      definition: (decrement-error)

44. diff-0-n=0: digit-0 x digit x working-memory -> digit-0

      definition: (subtract-error)

45. diff-1-n=1: digit-1 x digit x working-memory -> digit-1

      definition: (subtract-error)

46. diff-n-0=0: digit x digit-0 x working-memory -> digit-0

      definition: (subtract-error)
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47. diff-n-n=n: digit x digit x working-memory -> digit

      definition: (subtract-error)

48. doesnt-borrow: digit x digit x working-memory -> blank

      definition: (borrow-error)

49. dont-decrement-zero: digit-0 x digit x working-memory -> digit

      definition: (decrement-error)

50. dont-decrement-zero-over-blank: digit-0 x blank x working-memory -> digit-0

      definition: (decrement-error)

51. dont-decrement-zero-over-zero: digit-0 x digit-0 x working-memory -> digit-0

      definition: (decrement-error)

52. double-decrement-one: digit-1 x digit x working-memory -> digit

      definition: (decrement-error)

53. forget-borrow-over-blanks: digit x blank x working-memory -> digit

      definition: (decrement-error)

54. ignore-zero-over-blank: digit-0 x blank x working-memory -> blank

      definition: (decrement-error)

55. increment-over-larger: digit x digit x working-memory -> digit

      definition: (decrement-error)

56. increment-zero-over-blank: digit-0 x blank x working-memory -> digit-1

      definition: (decrement-error)

57. n-9=n-1-after-borrow: digit x digit-9 x working-memory -> digit

      definition: (borrow-error subtract-error)
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58. n-n=1-after-borrow: digit x digit x working-memory -> digit-1

      definition: (subtract-error)

59. n-n=9-plus-decrement: digit x digit x working-memory -> digit-9

      definition: (subtract-error decrement-error)

60. small-large=0: digit x digit x working-memory -> digit-0

      definition: (subtract-error)

61. smaller-from-larger: digit x digit x working-memory -> digit

      definition: (transpose-error)

62. stops-borrow-at-zero: digit-0 x digit x working-memory -> digit

      definition: (borrow-error decrement-error)

63. sub-one-over-blank: digit x blank x working-memory -> digit

      definition: (borrow-error decrement-error)

64. treat-top-zero-as-nine: digit-0 x digit x working-memory -> digit

      definition: (borrow-error)

65. treat-top-zero-as-10: digit-0 x digit x working-memory -> digit

      definition: (borrow-error)

66. zero-after-borrow: digit x digit x working-memory -> digit-0

      definition: (subtract-error)

67. zero-instead-of-borrow: digit x digit x working-memory -> digit-0

      definition: (subtract-error)
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