
Patterns of Change in Design Metaphor
A Case Study

William A. Stubblefield
Sandia National Laboratories

P. O. Box 5800
Albuquerque, New Mexico 87185

505-284-2856
wastubb@sandia.gov

ABSTRACT
Although design metaphors play an important role in
many software projects, their influence on system
functionality, project methodology and the interactions
among members of the development team is not well
understood. This paper seeks insights into these issues by
examining the development of a computer program under
the influence of a particularly strong design metaphor.

properties of computers can effectively be used to explain
human thought. The metaphor provides a restricted set of
hypotheses about human cognition. By focusing our
attention on the significant properties of relatively well
understood concepts (the source), metaphors impose an
essential structure on the enormous problem spaces found
in such target areas as scientific discovery, language
development, or, as examined in this paper, design.Keywords

Metaphor, software design, user-oriented design. Hesse [9] has examined the use of analogies in science,
providing a foundation for understanding design
metaphors. She describes three components of analogies:
the positive analogy consists of those properties of the
source that are known to apply to the target, the negative
analogy includes source properties that are either untrue or
irrelevant for the target, and the neutral analogy contains
those that have not yet been classified as positive or nega-
tive. Developing a metaphor or analogy requires evaluat-
ing the unclassified components of the neutral analogy.

INTRODUCTION
Metaphor has long been recognized to play an important
role in user interface design, with developers exploiting
desktop metaphors, agent metaphors and similar figures
to enhance the usability of computer interfaces. Recently,
there has been an increased recognition of metaphor’s
larger role in the design process, including its influence on
program functionality, system architecture and knowledge
representation [1-5].

Design and the Interaction Theory of MetaphorThe Design for Machinability Advisor [DFM] was built
to assist mechanical engineers in improving the manufac-
turability of machined parts. From the beginning, the pro-
ject was conceived to be a “spelling checker” for machin-
ability problems. This paper examines the influence of the
“spelling checker” metaphor on DFM’s design, as well as
the changes that occurred in our understanding of the
metaphor itself as the design matured. It also considers the
metaphor’s social context, particularly differences in the
way team members interpreted it, and the effects of these
differences on their interactions.

This initial model must be refined if we are to understand
the role of metaphor in design. Aspects of a design
metaphor can seldom be classified as simply positive or
negative: in transferring properties from the source to the
target, both designers and users generally will re-interpret
them. For example, direct manipulation interfaces are not
so much an instantiation of the ways we manipulate ob-
jects in space, as they are a rethinking of those operations.
Instead of grasping an object, we select it. Placing one
object on top of another (such as a document on a printer
icon) is not an act of physical stacking, but of invoking
some operation (such as printing).THE USE OF METAPHOR IN DESIGN

The use of metaphor in design reflects its function in such
areas as the development of language [6-8] and scientific
discovery [9-11]. Metaphors are figures of the form: “A is
B,” where B is said to be the source of the metaphor, and
A is the target. Interpretation of a metaphor is a process of
discovering which properties of the source may be valid
and useful to understanding the target [12]. For example,
cognitive science’s use of an information processing
metaphor can be regarded as a process of finding which

Similarly, properties that might initially seem to be part
of the negative metaphor are often modified during design
to maintain the metaphor’s consistency. An example of
this is in the use of a “trash can” icon to invoke file
deletion. Unlike real trash cans, trash can icons never
become full. This negative aspect of the metaphor can
cause problems: users who only empty their physical
trash cans when they overflow may neglect to empty their
computer trash, eventually causing disk storage to fill up
with deleted files. Some interfaces (e.g. the Macintosh)
ignore this problem, while others attempt to repair the
metaphor through such techniques as prompting the user
to empty the trash when logging off of the system.

Black’s interaction theory of metaphor [6] provides a
framework for understanding these processes of adapting
the positive and repairing the negative components of a
design metaphor. Black argues that metaphor is not
simply a process of transferring properties from the source
to the target, but a complex interaction between them in
which our knowledge of the target is equally capable of
changing our understanding of the source. Metaphor
induces complex shifts of meaning across both the target
and the source. To paraphrase Black,1 if implementing file
deletion with a trash can icon improves usability, we
must not forget that this will also change our
understanding of “real” trash cans. As an informal
example, colleagues have told me that they depend on the
ability to retrieve things from their computer trash,
treating it as an intermediate stage between long term
storage and deletion. This has made them wish for more
control over the schedule for emptying their office trash.

pressures from users, customers, technology, schedules,
budget and organizational demands. The shared metaphor
helped us to maintain a common understanding of the
project and made it easier for us to negotiate compromises
as the pressures of these competing demands increased.

These benefits were not without cost. Because the
“spelling checker” metaphor enabled such rapid early
progress, we made many decisions before we had a com-
plete understanding of the user’s needs and assumptions.
These early commitments and the power of the metaphor
often made it difficult to correct these problems.

Do Metaphors Ever Die?
A commonly accepted view of the use of metaphor holds
that, as a metaphor develops and becomes better under-
stood, its interpretation becomes conventionalized, reduc-
ing its ability to convey new ideas about the target.
According to some views, the metaphor eventually
becomes so conventionalized that it loses whatever
suggestive power it had as a metaphor and effectively
“dies.” Linguistic idioms are common examples of dead
metaphors. For example, “clawing his way to the top” is
no longer seen as a metaphor for corporate success, but is
simply a common, if not trite, idiom of everyday
language. Similarly, as cognitive science has matured, the
information processing metaphor has been conventional-
ized into the accepted problems of representation, search
and cognitive architecture.

The interaction theory’s view of metaphor as inducing
shifts of meaning in both target and source is important to
understanding design metaphors. During DFM’s design,
we encountered many situations that required modification
of the “spelling checker” metaphor. One of the most
notable resulted from the complexity involved in detecting
machinability problems. Unlike a word processor’s
spelling checker, which simply looks for words that fail
to appear in its dictionary, determining the machinability
of a feature in a metal part requires an understanding of the
feature's intended use, as well as its interactions with other
features. Consequently, DFM required much richer
evaluation criteria and user interactions than conventional
spelling checkers. This, in turn, broadened our
understanding of spelling checkers in general.

In general, design metaphors follow this life cycle,
shifting from the broadly suggestive to the more
conventionalized as they become reified in an artifact. As
DFM neared completion, at least certain aspects of our
interpretation of the “spelling checker” metaphor became
effectively fixed in the design. However, the details of this
process are far from straightforward. Rather than a process
of steadily refining the metaphor, development alternates
between periods of gradual refinement of a stable design,
and radical shifts in the design and the underlying
interpretation of the metaphor. This reflects Kuhn's classic
model of scientific discovery [13]. The DFM Advisor
went through at least three such radical interpretive shifts.

The Social Function of Metaphors
An important function of linguistic metaphors is in
defining the structure and boundaries of social groups,
with societies or segments of a society often defined by
shared metaphors. Teenagers seek new figures of speech
that adults will not share, just as hipsters have always
used dense and rapidly changing metaphors to lock out
“square” society. Cognitive science’s use of an
information processing metaphor virtually defines the
field, and distinguishes it from other psychological and
biological approaches to understanding thought.

Many theorists [7] argue that metaphors never completely
die, but retain both the structural properties of metaphor
and at least some potential for revealing new meanings.
This is also true of design metaphors, in spite of the
reifying effect of the design artifact. As the development
of DFM reveals, the eventual success of the project’s
initial stages further stimulated the “spelling checker”
metaphor, and led to its expanded use in both talking
about DFM and in proposing future projects.

As the development of the DFM advisor showed, this
social function is one of the most important aspects of
design metaphors. The “spelling checker” metaphor
provided a common frame of reference that enhanced
communication among members of the design team. This
was particularly important in enabling us rapidly to
outline an initial system design and development plan. It
remained important as the project grew in complexity and
different team members experienced potentially conflicting

PATTERNS OF CHANGE
The remainder of this paper uses the development of the
Design for Machinability Advisor as a case study in the
evolution of a strong central metaphor across the design
process. It considers both the influence of the metaphor on
the design, and the ways in which the design process
changed our understanding of the metaphor in turn. Our
experience supports the following observations:

1 “If to call a man a wolf is to put him in a special light, we
must not forget that the metaphor makes the wolf seem more
human than he otherwise would.” [2] (page 44)

• Although design metaphors do tend to move from

being richly suggestive to more fixed as the design ma-
tures, the patterns of change are far from steady, but
involve radical shifts in the interpretation and use of the
metaphor. Periods of relatively stable interpretation
alternate with more dynamic periods where the meaning
of the metaphor once again becomes highly plastic and
suggestive of multiple design options, including radical
changes in the design. Finally, the metaphor never really
“dies” but retains its metaphoric foundations and sugges-
tive power even after the system has been completed.

significantly and actively to design decisions.

• A project management team consisting of two
people, one who took primary responsibility for
planning, budget and organizational concerns. This
person also participated in the early phases of design,
and helped the design team remain synchronized with
more global requirements, such as organizational
standards for network interactions, and the need for our
system to eventually interact with other software also
under development. The other member of the
management team was primarily concerned with funding
and project development, and did not participate actively
in design after the early stages.

• Strong design metaphors can be both a benefit and
an obstacle [2, 14]. Where the metaphor is appropriate,
it can quickly lead to a powerful solution; where it is
not, it may make it harder to solve design problems. • The customer for the system was a mechanical

engineer and functioned as our primary source of user
input. We also sought out other engineers and
machinists for their evaluation of prototype systems.

• Design metaphors do not work only at a semantic
level, i.e. in terms of system functionality and user
interface. The metaphor also influences system
architecture, complexity and algorithm design. These, in
turn, can change the interpretation of the metaphor.

It is important to note that a central implication of the
“spelling checker” metaphor, that the DFM advisor should
be driven by feature recognition, was effectively set very
early in the project by our choice of the design team.

• A central function of design metaphors is social,
supporting communication and cooperation among
members of the design team. This process is far from
simple. Different team members arrive at different inter-
pretations of the metaphor, with often surprising results.

Interactions among the design team were complicated by
the fact that it was spread over four different organizations
and buildings at Sandia National Laboratories. The feature
recognition team was at one site, the primary project
manager and I were at a second, the domain expert at a
third, and the customer and sample users at several other
organizations. Although we met regularly (at least once or
twice per week during the early phases of the project), and
communicated by phone and e-mail as needed, this
organizational scattering did complicate our interactions.
One of the benefits of the unusually strong design
metaphor was in providing a common focus, one that
allowed us to work independently while maintaining a
shared but flexible understanding of our common goals.

THE DESIGN FOR MACHINABILITY ADVISOR
The DFM Advisor was intended to help mechanical de-
signers improve the manufacturability of machined metal
parts. Typical problems that add to the difficulty of ma-
chining a part include unnecessarily tight tolerance
requirements, features that require specialized machine
tools, failure to standardize features across different parts,
and use of hard to machine materials. Traditionally,
mechanical designers have focused primarily on the func-
tionality of parts, leaving manufacturability concerns until
later in the design process. This delay in addressing manu-
facturability increases the cost and difficulty of making
needed changes. DFM’s goal is to help mechanical
designers consider manufacturability early in the process,
when designs are still flexible and easy to change.

Because of the ambitious nature of the project, we made
an early decision to use an iterative, prototype-based
methodology that would allow us to explore the design
space more freely. Selecting this exploratory approach in
place of a more structured, top-down approach was clearly
the right decision, as many of our early assumptions even-
tually proved mistaken. Three prototypes were imple-
mented and evaluated in the process of refining the design.

When launching the project, our customer (a mechanical
designer) proposed the metaphor of a “spelling checker”
for mechanical designs. The initial specification called for
a system that used a feature recognizer to find machined
features (holes, slots, pockets, etc.) in a solid model of a
part. Once found, these features were to be passed on to a
knowledge-based system for evaluation.

A final important aspect of the development milieu is
Sandia National Laboratories' commitment to both
research and the development of practical, immediately
useful tools. As the project developed, these twin goals
both supported the exploratory methodology we had
selected, and also provided an additional set of design
constraints that influenced our development of the advisor.

The design team was composed of:

• A feature recognition team, consisting of two
software engineers, who were to refine and adapt existing
feature recognition software to the needs of the DFM
Advisor. One member of this team was also experienced
in artificial intelligence, and was extensively involved
with the knowledge engineering team.

PROTOTYPE 1: A PURE SPELLING CHECKER
The first prototype system we constructed was an attempt
at a direct realization of the “spelling checker” metaphor.
The feature recognizer acquired features from a solid model
of a part, and sent them to the design advisor for
evaluation. This prototype was only concerned with holes.

• A knowledge engineering team consisting of a
knowledge engineer (myself) and an experienced
manufacturing engineer who was initially intended to
serve as a domain expert, but who also contributed The advisor applied a list of critics to each feature, and

displayed those critics that detected potential problems. A
critic was essentially a rule for detecting a specific type of
machinability problem. The advisor displayed these “fired”
critics one at a time, just as a word processor’s spelling
checker displays misspelled words. A “Next” button
allowed the user to step through the applicable critics,
while additional buttons allowed the user to skip a feature,
redo a feature or start over with the first feature.

evaluations, neither the domain expert nor potential users
saw any difficulty in the essentially unpredictable order
with which features were evaluated.

On reflection, the design team decided that there was no
reason to be bound to an arbitrary order of evaluation and,
in prototype 2, developed a “feature browser” that allowed
the user to check features in any desired order. This
browser displayed a list of features; clicking on a feature
caused it to be highlighted in the display of the part
drawing and sent to the advisor to be evaluated. The users
appreciated this improved flexibility, although it is
interesting to note that no one complained about the
original, more rigid order of evaluation. I believe this
results from the power of the original metaphor, and
illustrates the way a strong design metaphor can lead a
user to accept a less than optimal solution.

Figure 1 shows the main screen of this prototype. In order
to let the user know which feature was being checked, the
feature recognizer displayed the part with the current
feature highlighted (not shown). The screen also displays
the feature in profile (upper right), surrounded by
information about its dimensions and tolerances. The box
below displays the text of critics (in the figure, it shows a
“dummy” test critic). The buttons at the bottom allow the
user to move through both features and the critics of a
given feature. This order is determined by the feature
recognition algorithms.

The Problem of Missing Information
A more difficult problem was in the lack of complete
information from the feature recognizer. Due to
limitations of the solid modeling software the feature
recognizer was built upon, it was unable to recover
information about tolerances from the original engineering
drawing. This was a severe limitation, since nearly all
machinability problems involve tolerances at some level:
if you don’t care about tolerances, practically anything can
be machined. Although a related project was exploring the
possibility of adding this capability to the feature
recognizer, it was not available to us for use in the Design
for Machinability Advisor.

The Order of Feature Evaluation
Implementing such a direct translation of the “spelling
checker” metaphor required that we repair several potential
breakdowns in its interpretation. The first of these was
lack of any obvious sequence in feature recognition. A
conventional spelling checker scans a document from start
to finish, highlighting potentially misspelled words as it
checks. In contrast, feature recognition exhibited no
obvious sequence, although we did highlight the current
feature in the feature recognizer’s display. In initial

Figure 1
 In order to minimize data entry requirements on the user,
we felt it important to provide useful default values for
tolerances on feature dimensions. This proved difficult,
since “reasonable” tolerances depend upon the feature's
intended function. Our solution to this problem was to
construct a database of common features that could be
matched with recognized features to obtain reasonable
default tolerances. For example, a countersunk hole for a
standard screw could be recognized with reasonable
reliability, providing the user with recommended tolerance
values for that feature.

interpretation. Generally, metaphors are assumed to fail if
they make predictions that prove to be false. But, as we
discovered, it is possible to implement a semantically
valid interpretation of a metaphor, only to see the it break
down because of differences in complexity between the
source and target situations.

Finding vs. Preventing Mistakes
The final difficulty encountered in prototype 1 was in its
emphasis on error detection, rather than error prevention.
As a “spelling checker” for designs, it was natural to
apply the advisor to existing engineering drawings. It was
only as we made progress in knowledge acquisition that
we recognized that machinability knowledge could be
more easily and more effectively applied if we offered it to
the engineer as he or she was creating a design, rather than
after the design already existed. It is interesting to note
that although the maxim, “it is better to prevent errors
than to detect them,” is part of every designer’s
knowledge, the influence of the “spelling checker”
metaphor led us to ignore this valuable rule of thumb
until relatively late in the development of the first
prototype. Similarly, although our customer clearly
specified that the advisor would be used to check finished
designs, on seeing the prototype, he asked if it couldn’t
“detect errors as he was working.”

This solution never proved fully satisfactory. Although
we were able to classify many simple features, such as
holes, in a reasonable manner, it was clear that we would
have difficulty in extending the approach to more
complex, novel features. Also, by providing recommended
tolerances rather than those the user had initially entered
into the design drawing, we were introducing an
unacceptable possibility for confusion and error into their
interaction with the system. These problems were among
the main reasons for changing the approach taken in this
early prototype.

Breakdowns Caused by Complexity Mismatch
A deeper problem was in the complexity of recognizing
machinability problems. Spell checking a textual
document is a relatively straightforward process of
matching words in the document against those in a
dictionary and indicating words that failed to match.
Formally, this is a process of matching text strings, and
algorithms exist for doing this efficiently. As we worked
with our domain experts in acquiring knowledge of
machinability problems it became clear that evaluating
machinability problems was significantly more complex
than finding a word in a spelling checker’s dictionary. For
example, determining whether a 0.002” diameter tolerance
on a 0.25” hole is excessive or not depends entirely on the
intended use of the hole. This, in turn, required asking
extensive questions of the user, a further violation of the
“spelling checker” metaphor. Although we did not
formally characterize the complexity of evaluating
features, it clearly cannot be done by simple matching
algorithms, and is most likely context sensitive.

PROTOTYPE 2: THE DUAL-USE APPROACH
The second prototype addressed many of these difficulties,
but did not abandon the metaphor entirely. Although the
domain expert and I had doubts about the metaphor by this
time, the feature recognition team and the customer still
found it to be useful. Our discussions revealed a number
of effective arguments for the benefits of a feature driven
approach. Among these was the ability of the advisor to
serve as a final check before manufacture, the learnability
and usability gains provided by the metaphor, the ease of
fitting a “spelling checker” into the engineering
development process, and the technical benefits of
providing the feature recognition team with a challenging
test of their capabilities. Consequently, we chose to
implement a "dual-use" strategy, retaining the feature-
driven approach as one mode of use for the advisor, while
also allowing the advisor's machinability knowledge to be
used without feature recognition.Further evidence of the interaction between metaphor and

computational complexity can be found in the customer's
initial suggestion that we not consider the intended use of
features in our evaluations, as this was too difficult. On
subsequent conversations with the customer, our domain
expert and other engineers and machinists, everyone
acknowledged the importance of this information.
Although I can only speculate, it seems reasonable that
the “spelling checker” metaphor may have led the
customer to add this limitation to our initial requirements
in an effort to fit the problem to the metaphor.

When used as a checker for existing models, prototype 2
took an approach that was similar to prototype 1. The
only real difference was in replacing the one-at-a-time
approach to checking features with a more flexible feature
browser that allowed the user to select features from the
solid model and check them in any desired order. In
providing a second, non-feature-driven interface, we made
the database of typical features directly available to the
user. They could browse this list, selecting, for example,
recommended configurations for common features such as
countersunk holes or holes for a rotating pin or shaft. The
user could then edit these recommended configurations,
changing either dimensions or tolerances. Where these
changes violated any of the machinability checks,
appropriate critics would fire to alert the user.

This impact of complexity on a design metaphor is both
unexpected and significant. None of the literature I have
encountered on the use of metaphor in discovery or design
mentions the impact of complexity issues on metaphor

In evaluating this "dual-use" approach, it was clear that we
had moved in the right direction. Although everyone
agreed on the merits of a dual-use strategy, the team
remained divided over the relative value of the “front end
design tool” vs. the “spelling checker” modes of use.

tolerances for the pin and hole. This more extensive
interaction with the user moves considerably beyond the
“spelling checker” metaphor.

In contrast, critics were simple if/then tests and required
no user input. A typical critic detected holes whose
diameter failed to match any standard size drill bit, and
called this problem to the user’s attention. Because of
their simplicity, critics were able to fit the “spelling
checker” metaphor more directly than tools like the Pin
Fit Advisor. In effect, prototype #3’s critic facility
returned to an almost pure implementation of a “spelling
checker” for designs, although in doing so, it became only
one component of a larger machinability tool kit.

PROTOTYPE 3: TOOLS AND CRITICS
The final prototype built on its predecessor’s dual-use
approach, but made two notable additions to it. The first
of these was in recognizing that certain types of
knowledge could be useful for either front-end design or
feature checking, but not both. We supported this by
dividing our knowledge base into “tools” and “critics.”
Critics were used exclusively to evaluate existing features,
whereas tools could be used for either evaluation of
existing features, or to design features from scratch. A key
difference between tools and critics was that tools involved
more extensive user interaction, while critics simply
detected potential problems without requiring additional
user input. This allowed critics to function more like
"pure" textual spelling checkers, while letting the "tools"
provide richer forms of advice to the user.

Evaluating Solid Models
When checking an existing mechanical design, the user
browsed the features, and selected those to be checked.
Each tool or critic included a condition test to determine
its applicability to a given feature. When the user
requested a feature be checked, DFM displayed both critics
that detected problems with the feature and tools that
might be useful in its refinement. Selecting an entry
either displayed a description of a problem (for the critics),
or initialized the tool with the feature’s dimensions and
launched it as a separate application.

An example of a tool was the PIN FIT ADVISOR (Figure 2)
which advised the user on dimensions and tolerances of
holes that were to fit a pin or moving shaft. Even when
initialized with the diameter of a recognized hole, the Pin
Fit Advisor still asked the user a number of questions
about the use of a hole (e.g. “is the hole intended to allow
a shaft to rotate, or is it intended to fit tightly over a pin
to accurately position a part?”), and recommended the

An Initial Design Tool Kit
When the tool kit was used during initial design (i.e.
without a solid model or feature recognizer), the user
selected tools from a browser. Critics were not available

Figure 2
in this mode of use. Because the advisor did not use the
feature recognizer to initialize tools with feature
dimensions, the user entered the required dimensions and
tolerance information directly.

understand the design (and the “spelling checker”
metaphor) better, we were able to focus more clearly on
these architectural issues.

CONCLUSION
Freed from this tight coupling with the feature recognizer,
we had more freedom in designing tools that were not
feature oriented. One of these tools, the SURFACE FINISH
EVALUATOR, determined which machining processes
would be needed to achieve a specified surface finish, and
evaluated the relative cost of these processes. This tool
bore no direct relationship to particular geometric features.

The development of the Design for Machinability Advisor
was a valuable lesson in the use of design metaphors.
Lessons learned from the project include:

Design Metaphors have Complex Life Cycles
The development of design metaphors closely follows the
interaction theory, being characterized by shifts in the
interpretation of both the design (the metaphoric target)
and the source metaphor. As the DFM Advisor developed,
it extended our understanding of “spelling checkers” to
include more complex interactions with the user and
greater user control over the order with which items are
checked.

Architectural Implications
A significant change in the third prototype was
architectural. The advisor was decomposed into much
more specialized, independent objects than the earlier
versions. For example, we recognized that the feature
browser was a potentially valuable addition to the feature
recognizer that could stand alone from the Design for
Machinability Advisor. Consequently, it was separated
from DFM, and implemented as a pure feature browser
that communicated with clients (such as DFM) through
message passing. Similarly, each feature analysis tool,
such as the Pin Fit Advisor could be either invoked as an
independent application, or initialized with data from the
feature recognizer. These were deliberately designed as
independent objects to enable later migration to a
distributed object environment, as is consistent with
broader corporate software strategy. As we came to

Although design metaphors do tend to move from the
broadly suggestive to a more static interpretation as the
design becomes fixed, this is far from a steady process,
but alternates between periods where the interpretation of
the metaphor remains relatively stable, and times of
radical shift in the understanding of the metaphor. In the
development of DFM, there were three such shifts:

1. Recognizing the implications of the feature recognizer’s
lack of obvious order, and the rejection of a fixed order
of analysis in favor of a more flexible feature browser.

2. The adoption of a dual-use strategy that allowed the

user to access system knowledge either to check features,
or independently of the feature recognizer.

resulted in minor inconsistencies, none of these involved
deeper semantic problems and all were easily repaired. I
believe that this was due to the common understanding
engendered by the shared metaphor.

3. Prototype 3’s division of machinability knowledge into
distinct “tools” and “critics”, where only critics were
required to be applicable to geometric features. This
allowed us to create tools that had no direct link to the
feature recognizer. Essentially, this step pushed the
“spelling checker” metaphor back into part of the DFM
Advisor (the feature recognizer/critic combination), both
returning to a “purer” instantiation of the metaphor and
allowing other parts of the tool to function in a less
constrained manner.

Another surprising discovery was that different
interpretations of the design metaphor coexisted
harmoniously within the design team. As the project
progressed, the interpretations of the metaphor developed
along multiple lines: the machining expert and I came to
reduce the importance of the “spelling checker” metaphor,
while the customer and one of the management team
retained a more direct interpretation. We were concerned
that this might cause misunderstanding or rejection of the
system. Surprisingly, they were quite happy to continue
characterizing the advisor as a spelling checker, and
accepted the final prototype as a faithful rendering of the
metaphor. Although reliance on the "spelling checker"
metaphor initially caused some confusion for the customer
in using the final system, they quickly adapted, and did so
without feeling a need to abandon the metaphor.
Finalization of the design did not detract from the
flexibility with which different team members interpreted
the metaphor.

In addition to exhibiting the shifts of meaning predicted
by the interaction theory, the development of the “spelling
checker” metaphor also supports Lakoff and Johnson’s [7]
contention that metaphors never really die. Although the
third prototype of the advisor both reduces the metaphor’s
importance and fixes its interpretation in an artifact, both
the customer and the project managers continue to use the
metaphor for marketing DFM and planning future
projects. The Design for Machinability Advisor has
become one instance of a larger metaphor that will
continue to be explored through future projects.

Similarly, the feature recognition team continued to regard
the advisor as a “spelling checker” for designs, which is
not surprising, since the use of the feature recognizer was
closely tied to this metaphor. However, they were quick to
accept such changes in the metaphor’s interpretation as the
shift to a feature browser driven approach. It is also
interesting to mention that as the feature recognition team
has started to explore other applications for their software,
they have largely ignored the “spelling checker” metaphor.
Although they continue to use it in discussing DFM, the
metaphor plays little role in their continuing work.
Because it serves no useful function, it is essentially dead
for this portion of our team.

Metaphors are a Benefit and an Obstacle
Because the “spelling checker” metaphor was so strong, it
enabled us to quickly agree on a basic design and rapidly
develop the first prototype. Prototype 1 was completed in
about 4 months, which was fairly impressive given the
fact that it involved a separate feature recognizer and
knowledge based system interacting over a computer
network. However, as the design matured, the metaphor
also interfered with our ability to respond to an emerging
understanding of the user’s needs and abilities. In
particular, the “spelling checker” metaphor made it
difficult to move into a fully dual-use approach that
allowed both evaluation of existing designs and the
provision of front-end design tools. Design Metaphor as a Necessary Fiction

As our experience with the Design for Machinability
Advisor indicates, the use of metaphor in design is far
from a simple affair. It is characterized by radical shifts in
interpretation of the metaphor and resulting changes in the
design. In spite of the metaphor’s ability to bring the
design team to a common focus in a rapid manner, it often
hindered our understanding of user reactions and a flexible
response to problems in the developing design.

Metaphors and Computational Complexity
Although my understanding of metaphors in language and
science had prepared me for the likelihood that certain
implications of the “spelling checker” metaphor would
prove wrong for the design advisor, I had assumed that
these would be strictly semantic in nature; that is, I
assumed that the metaphor would fail if it led to the
wrong functionality or a confusing interface. Experience
with the Design for Machinability Advisor demonstrated
that a metaphor could also break down if the underlying
computational complexity of the resulting design was
drastically different from that of the source.

On balance, I believe that these are not so much problems
that need to be fixed as they are essential features of an
inherently complex process. I do not believe that we could
have started, let alone completed, this project without the
contributions of this strong central design metaphor. By
leading us to develop an initial prototype quickly, we were
able to impose a structure on what would have otherwise
been an enormous and ill-defined design space. Although
the system has largely moved beyond it, the “spelling
checker” metaphor was, and remains an essential
component of our understanding of the DFM Advisor.

The Social Function of Design Metaphors
The most unexpected lesson learned was the importance of
the design metaphor’s social role. Because the design team
was separated both geographically and organizationally,
and because of the short development times required for a
prototyping methodology, we often had to make decisions
without adequately consulting other members of the team.
This was particularly true of the feature recognition and
the knowledge engineering groups. Although these often

The lessons to be learned are not that we should avoid
metaphor in design, but that we should be prepared for the

shifts in meaning that accompany their development, and
their tendency to blind us to possibilities that do not fit
the metaphor's obvious interpretations. I hope that the
observations made in this paper will help designers use
metaphors with the flexibility and insight they require.

MA: Addison-Wesley.

ACKNOWLEDGMENTS
I would like to thank Sandia National Laboratories for
their generous support of the Design for Machinability
Project, and Ken Washington, Steve Kleban, Dwight
Miller and John Linebarger for comments on early drafts
of this paper. I also thank the members of the Design for
Machinability team: John Mitchiner, Kim Mahin, Jill
Rivera, Lothar Bieg, Robert LaFarge, David Plummer and
Marcus Craig. Their knowledge, design sophistication and
friendship made this project unusually rewarding.

REFERENCES

1. Carroll, J., R. Mack, and W. Kellogg, Interface
metaphors and user interface design, in Handbook of
Human Computer Interaction, Hellander, Editor. 1988,
Elsevier: Amsterdam.

2. Erickson, T., Working with interface metaphors, in
The Art of Human-Computer Interface Design, B.
Laurel, Editor. 1990, Addison-Wesley: Reading, Mass.

3. Maclean, A., et al. Reaching through analogy: A
design rationale perspective on roles of analogy. in
CHI-91. 1991. New Orleans: Addison Wesley.

4. Madsen, K.H., A Guide to Metaphorical Design.
Communications of the ACM, 1994. 37 (12): p. 57-
62.

5. Coyne, R., Designing Information Technology in the
Postmodern Age: From Method to Metaphor. 1995,
Cambridge, Mass.: The MIT Press.

6. Black, M., Models and Metaphors. 1962, Ithaca, NY:
Cornell University Press.

7. Lakoff, G. and M. Johnson, Metaphors We Live By.
1980, Chicago: University of Chicago Press.

8. Gibbs, R.W.J., The Poetics of Mind. 1994,
Cambridge: Cambridge University Press.

9. Hesse, M., Models and Analogies in Science. 1966,
Notre Dame, Indiana: University of Notre Dame Press.

10. Gentner, D., Flowing waters or teaming crowds:
Mental models of electricity, in Mental Models, D.
Gentner and A.L. Stevens, Editor. 1983, Lawrence
Elbaum Associates: Hillsdale, N. J.

11. Stubblefield, W.A., Source Selection for Analogical
Reasoning: An Interactionist Approach. 1995,
University of New Mexico:

12. Gentner, D., Structure mapping: A theoretical
framework for analogy. Cognitive Science, 1983. (7):
p. 155-170.

13. Kuhn, T.S., The Structure of Scientific Revolutions.
1962, Chicago: University of Chicago Press.

14. Laurel, B., Computers as Theater. 1991, Reading,

