

Software Design and Engineering as a
Social Process

Abstract
Traditionally, software engineering processes are based
on a formalist model that emphasizes strict documen-
tation, procedural and validation standards. Although
this is a poor fit for multidisciplinary research and de-
velopment communities, such groups can benefit from
common practices and standards. We have approached
this dilemma through a process model derived from
theories of collaborative work rather than formal
process control. This paper describes this model and
our experiences in applying it in software development.

Keywords
Software process, agile methods, case study, situated
cognition, activity theory, distributed cognition.

ACM Classification Keywords
D.2.0 Software Engineering - General, D.2.9
Management, D.2.10 Design.

Introduction
Traditional software engineering practice assumes a
fundamental distinction between design’s messy,
empirical explorations, and engineering’s need to
control complexity and change. This is evident in the
accepted separation of design and engineering into
distinct activities that communicate through formal,
authoritative system requirements. In recent years,
both theory and practice have undermined this
distinction. Empirical studies of work reveal a rich,
improvisational process that challenges the possibility
of “capturing” user needs to levels of validity and
stability assumed in formal requirements [1, 2]. Agile
software methods [3-5] have shown the power of
iterative prototyping to support concurrent design and
engineering. The view of design and engineering as
distinct activities has given way to an iterative process
of refining design ideas across diverse representations:
requirements, scenarios [6], storyboards, prototypes,
and, ultimately, delivered software.

In spite of this, rethinking the relationship between
design and engineering remains difficult, particularly in
a corporate or governmental context. The separation of

Copyright is held by the author/owner(s).
CHI 2007, April 28–May 3, 2007, San Jose, California, USA.
ACM 978-1-59593-642-4/07/0004.

William A. Stubblefield

Sandia National Laboratories

P. O. Box 5800

Albuquerque, NM 87185

wastubb@sandia.gov

Tania L. Carson

Sandia National Laboratories

P. O. Box 5800

Albuquerque, NM 87185

tlcarso@sandia.gov

“hard” engineering and “soft” design skills permeates
our educational and work cultures. Management often
places a premium on process models like the Capability
Maturity Model (CMM) [7] that emphasize consistency
and objective metrics over the often messy, empirical
process of research and design. Although agile software
methods challenge this orthodoxy, they often ignore
such techniques as ethnography, storyboarding and
usability testing to focus on coding as the vehicle for
design. Where design and engineering do interact
successfully, this success often depends upon implicit
activities and social commitments, leading to
communication problems, and difficulties in growing or
even sustaining the development community.

This paper describes our experience in developing and
applying a software development methodology that
builds on the deeper similarities and interdependencies
between design and engineering to address these
problems.

Background
The Systems Engineering and Analysis (SEA) business
area at Sandia National Laboratories conducts applied
research and development in three main areas:
modeling and analysis of national infrastructure,
knowledge management, and collaboration support.
The complex, multidisciplinary nature of these problems
has caused SEA to evolve into a loosely coupled
community of computer scientists, modelers,
infrastructure experts, ethnographers, usability
specialists, social scientists, cognitive scientists and
others who collaborate largely through informal, face-
to-face means. In recent years, our success in
delivering useful software and models has caused us to
grow, bringing increased pressure to formalize our

processes, both to address corporate requirements and
to support our own need to maintain existing systems
and manage our growth.

Recognizing that excessive formality could harm this
productive social dynamic, our management chose not
to impose disciplines such as CMM on the community,
and challenged staff to take a grass-roots approach to
the problem. Activities and Practices (AP) is a software
process that has come out of this effort. AP builds on
theories of cooperative work, situated cognition and our
own sense of community to increase formality without
restricting the interplay of disciplines – particularly
design and engineering – that has proven so effective.

Foundations
What design and engineering (as well as scientific
research, another component of our community) have
in common is that they are socially situated activities.
Traditional software engineering takes a rationalist
approach that emphasizes rigorous processes, formal
representation, and quantitative metrics of engineering
knowledge as a vehicle for managing development. We
chose to base AP on theories of intelligent activity as a
social process. Focusing on the social foundations of
activity de-emphasized the methodological differences
between design and engineering, and helped us to build
on the common patterns of communication that already
existed in our community.

We began with a study of current practices in the
organization. We distributed a questionnaire asking our
colleagues about the tools they used in their work. It is
interesting to note that response was high (over 50%)
even though this was not a management requirement.
We believe this is because the survey came from other

staff members who shared their desire to preserve our
culture while addressing process requirements. This
survey revealed a sophisticated use of tools to manage
source code, to automate tests and builds, and to track
bugs. As would be expected, there was less automated
support for fieldwork, interaction design, usability and
other aspects of design. Also as we expected, there was
little use of formal requirements management tools,
with developers using text documents, screen sketches,
rapid prototypes and other representations for design
definition. Given this high-level of tool use, and what
was already an informal integration of design and
engineering activities, we made an early commitment
to documenting existing practices, rather than imposing
discipline on them. This “build the sidewalks where the
grass is worn” approach quickly became the dominant
constraint on our work.

In order to give expression to people’s informal
practices, we drew on a variety of social models of
work. Although space precludes a more detailed
discussion, theoretical elements we built on include:

• Embodied cognition [8-10] holds that
intelligent activity depends fundamentally on
elements of our biological embodiment,
including perception, emotion, aesthetics, and
innate learning biases. This led us to recognize
that much of skills a process must support are
implicit in people’s experience and social
context. Embodied theories challenge the
common goal of making implicit knowledge
explicit with evidence for the deeply embodied,
concrete, situational nature of practice. This led
us to avoid the common goal of trying to make
this implicit knowledge explicit in the process.

• Situation-action theory [2] was important in
emphasizing the role of improvisation in

carrying out plans and procedures. It led us to
avoid constraints on the order of activities and
focus on the products (code, models,
documentation) these activities produced.

• Activity theory [11] not only reinforced this
focus on the object of work, rather than
specific behaviors, but also emphasized the
importance of tools in mediating collaboration.
In leading us to look at tools as mediating
collaboration, rather than simply as easing
work, this led to a key element of AP: the use
of a wiki to moderate communication and
documentation alike (see below).

• Distributed Cognition [12] further reinforced
our approach by emphasizing information
artifacts as the focus of understanding
collaborative work.

Details of Activities & Practices (AP)
Taking social models of cognition as a foundation for
our process, rather than the formal/rationalist model
underlying traditional software engineering, provided a
common foundation for managing design and
engineering. It also influenced our process in more
specific ways. The key structural commitment was to
work at a higher level of abstraction than most
software processes. We defined two major elements in
our process: activities and practices. Activities are
relatively self-contained units of work we provide
customers. Each activity has a set of practices
associated with it. As a first approximation, we can
think of activities as “what we do,” and they are mainly
characterized by the product they produce for our
customers. In contrast, practices define “how we do it.”
Practices do not have products in the sense of
something delivered to a customer, but contribute to
creating the activity’s product. However, practices do
produce various artifacts and require documentation.

An example of an activity is “Fieldwork and Problem
Analysis.” The object of this activity is a documented
understanding of the customer problem and its context.
Practices that support it include qualitative interviews,
observational studies, focus groups, and problem
analysis. Similarly, the activity “Project Management”
has as its object the documentation of development
work for customers and our own management.
Practices include planning, budget, issue tracking, etc.
The activity “Iterative Software development” produces
code as its object and includes such practices as
architecture and algorithm design, design and code
reviews, unit & regression testing, and frequent
integration. There are a total of ten activities with an
average of five practices each.

This higher-level focus enabled us to integrate design
and engineering easily. For example, the activity
“Interaction, interface and functional design” has as its
product a product definition expressed through
requirements, scenarios, storyboards and information
models. Note that we use the same framework for both
engineering and design. Design and Engineering are
both activities; AP makes no structural distinction
between them, leaving these specifics to the individual
developer. Note also the de-privileging of
requirements: although they are an object of the
design activity, they are treated on the same level as
scenarios, storyboards and other less formal design
representations.

Another feature of AP is its support for improvisation.
This comes from two features: 1) individual project
teams specify which activities and practices they will
implement. Generally, this is the result of discussion
between teams and customers. 2) There is no order on

the conduct of practices. Individuals and teams can
carry them out in any order that makes sense in
context. This idea, drawn from situation-action theory
allows maximum flexibility while affording standards on
tools and delivered artifacts.

Perhaps the most important aspect of AP is its
emphasis on tools and media. Our goal was to
eliminate after the fact documentation and capture all
relevant information as a by product of collaboration.
To this end, we use a wiki-based project management
tool, Trac, for all project interactions. This includes
meeting notes, management of design documents, and
assignment of project tasks. Tickets not only assign
software tasks like bug fixes or new features, but also
track design (“interview Jane Doe”) and project
management tasks.

An important feature of AP is the use of the Trac tool to
capture meeting minutes and assign tasks in real time.
Project meetings, generally held weekly, use a
networked computer and projector to display a new
Trac-wiki page for the meeting. As decisions are made,
the project leader documents them on the wiki. Since
everyone participates in both the decision and its
documentation, later misunderstandings are reduced.
Finally, the wiki and associated tickets provide a history
of the project for corporate and other requirements.

Example: The Integrated Stockpile Evaluation
(ISE) Project
Our customer, the ISE team is responsible for
overseeing a large number of projects involved in
maintaining the United States’ weapons stockpile. Their
responsibilities include planning, funding, tracking and
reporting on these diverse efforts. Although they had a

process for doing so, they wanted to both automate
and improve it. We were brought in as software
developers, and also participated in their process
redesign. One of this paper’s authors (Carson) was
Project Manager (PM) on this effort for its duration; the
other (Stubblefield) worked as a designer in the early
stages but left as it moved into implementation.

One of our motivations for developing AP was the PM’s
need for a more consistent and automated way to
manage, track and oversee projects. She was
responsible for 6 projects plus miscellaneous teams to
track proceedings for at some level. All had similar
needs that included project meetings, report, partner
status, management status, budget and financial
tracking, team resources and general information. She
needed communications to be in one place for each
project and ease of use with consistency for these
projects. When the project began, AP was in its
conceptual stages, so this effort became both a focus
and test for the effort.

From the beginning, the PM used a tablet PC to
document the details of the meeting as it occurred, and
projected these results for the participants. She
captured details such as the date, time and place of the
meeting; who attended; the agenda or purpose; the
body of the meeting and finally the action items. After
each meeting, the report would be sent via email to the
team. This approach effectively made our customers
partners in a participatory development effort.

In keeping with our goal of basing AP on what had
proved successful in practice, we retained this approach
as a project management practice we called real-time,
media-based (RTMB) documentation. At the suggestion

of a colleague, we adopted the Trac Wiki and
Subversion tools as a common framework for this.
Nothing really changed about how meetings, reports,
status, etc. were conducted for any of these projects
with the exception of the PM.

As we developed the AP, we chose the ISE project to
“pilot” it using the new set of tools, because it was the
basis of much of the process design. Interactions with
the partners of this project were on a weekly basis.
Everyone discussed and reviewed the week’s work. We
negotiated and agreed upon the next week’s goals,
which we captured in an “as-you-go” fashion. A benefit
was that the entire team participated, clarified, asked
questions and owned any action items created during
these meetings. This avoided later confusion.

We recorded action items on Trac tickets for
documentation and tracking purposes. When the tickets
or action items were entered into the system during the
meeting, a team member would take ownership of the
item. It would then be waiting for them in their email
inbox at their office. The team defined all types of
requests or items tracked: requirements, changes,
bugs, acceptances, milestones, etc. Other meetings
occurred as needed, for example, between the
programmers and one or more of the partners.
Although the PM was not present, these meetings were
conducted in the same fashion.

Conclusion
In retrospect, the most valuable decision we made was
to avoid imposing hierarchy or process on the effort
and to let the team’s collaboration evolve naturally and
to use this to define the process. Although everyone
recognized the need for formality in project

management, this evolution kept an emphasis on
communication.

The strengths of this real-time approach to
documentation are that it is written, visual, verbal and
participatory. Because everyone saw what was being
captured, interpreted and discussed as it happened,
trust and ownership within this team, spilled over to
the relationship with the partners and visa versa, and
over time, open and honest negotiations occurred
naturally. This approach, of developing AP while our
partners developed their own process, and we
developed the software proved fortunate. Comments
from the partners: “I think the ISE project is already
going very well…I really like the iterative method we’ve
been using this year due to all the changes in
requirements…”

Having formalized this in the Activities and Practices
definition, we have applied it successfully to other
projects. In keeping with the multidisciplinary nature of
our organization, we have used AP on development,
assessment, and pure design projects alike. We have
shared these ideas with our colleagues, and adoption is
beginning to spread. Colleagues who have not adopted
AP use similar methods and tools. We are negotiating
refinements to incorporate their ideas into future
versions of the standard.

Acknowledgements
Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under contract
DE-AC04-94aAL85000.

Citations

[1] Forsythe, D.E., Studying Those Who Study Us: An

Anthropologist in the World of Artificial
Intelligence. 2001, Stanford, CA: Stanford
University Press.

[2] Suchman, L.A., Plans and Situated Actions: The
Problem of Human Machine Communication.
1987, Cambridge: Cambridge University Press.

[3] Beck, K., Extreme Programming Explained: Embrace
Change. 1999: Addison-Wesley.

[4] Cockburn, A., Crystal Clear: A Human-Powered
Methodology for Small Teams. 2005, Boston, MA:
Addison Wesley.

[5] Highsmith, J.A.I., Adaptive Software Development.
2000, New York: Dorset House Publishing.

[6] Carroll, J.M., Making Use: Scenario-based design of
human-computer interactions. 2000, Cambridge,
Mass: MIT Press.

[7] SEI, C.M.U.S.E.I., The Capability Maturity Model:
Guidelines for Improving the Software Process.
1994, Reading, MA: Addison Wesley.

[8] Barkow, J.H., L. Cosmides, and J. Tooby, eds. The
Adapted Mind: Evolutionary Psychology and the
Generation of Culture. 1992, Oxford University
Press: Oxford.

[9] Lakoff, G. and M. Johnson, Philosophy in the Flesh:
The Embodied Mind and Its Challenge to Western
Thought. 1999, New York: Basic Books.

[10] Varela, F.J., E. Thompson, and E. Rosch, The
Embodied Mind: Cognitive science and human
experience. 1991, Cambridge, Mass.: MIT Press.

[11] Nardi, B.A., Context and Consciousness: Activity
Theory and Human-Computer Interaction. 1996,
Cambridge, Mass.: MIT Press.

[12] Hutchins, E., Cognition in the Wild. 1995, Cambridge,
Mass.: MIT Press.

